
A Survey of Languages for
Specifying Dynamics: A Knowledge

Engineering Perspective
Pascal van Eck, Joeri Engelfriet, Dieter Fensel,

Frank van Harmelen, Yde Venema, and Mark Willems

AbstractÐDuring the last years, a number of formal specification languages for knowledge-based systems has been developed.

Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to

solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the

means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning

behavior of a knowledge-based system. This paper focuses on the second aspect. For this purpose, we survey existing approaches for

specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information

systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic

programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of Abstract State Machines.

Index TermsÐSpecification languages, knowledge-based systems, dynamics, inference control, update logics.

æ

1 INTRODUCTION

OVER the last years, a number of formal specification
languages have been developed for describing knowl-

edge-based systems (KBSs). Examples are DESIRE [1], [2];
KARL [3], [4]; KBSSF [5], [6]; �ML�2 [7]; MLPM [8], and TFL
[9]. In these specification languages, one can describe both
knowledge about the domain and knowledge about how to
use this domain knowledge in order to solve the task which
is assigned to the system. On the one hand, these languages
enable a specification which abstracts from implementation
details: They are not programming languages. On the other
hand, they enable a detailed and precise specification of a
KBS at a level of precision which is beyond the scope of
specifications in natural languages. Surveys on these
languages can be found in [10], [11], [12].1

A characteristic property of these specification languages
results from the fact that they do not aim at a purely
functional specification. In general, most problems tackled

with KBSs are inherently complex and intractable (see e.g.,
[13] and [14]). A specification has to describe not just a
realization of the functionality, but one which takes into
account the constraints of the reasoning process and the
complexity of the task. The constraints have to do with the
fact that one does not want to achieve the functionality in
theory but rather in practice. In fact, a large part of expert
knowledge is concerned exactly with efficient reasoning
given these constraints: it is knowledge about how to
achieve the desired functionality. Therefore, specification
languages for KBSs also have to specify control over the use
of the knowledge during the reasoning process. A language
must therefore combine nonfunctional and functional speci-
fication techniques; on the one hand, it must be possible to
express algorithmic control over the execution of substeps.
On the other hand, it must be possible to characterize
substeps only functionally without making commitments to
their algorithmic realization.

The languages mentioned are an important step in the
direction of providing means for specifying the reasoning of
KBSs. Still, there is a number of open questions in this area.
The most important problem is the specification of the
dynamic behavior of a reasoning system. The specification
of knowledge about the domain seems to be well under-
stood. Most approaches use some variant of first-order logic
to describe this knowledge. Proof systems exist which can
be used for verification and validation. The central question
is how to formulate knowledge about how to use this
knowledge in order to solve a task (the dynamics of the
system). It is well-agreed that this knowledge should be
described in a declarative fashion (i.e., not by writing a
separate program in a conventional programming language
for every different task). At the moment, the afore-
mentioned languages use a number of formalisms to
describe the dynamics of a KBS: DESIRE uses a metalogic

462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

. P. van Eck is with the University of Twente, Faculty of Computer Science,
P.O. Box 217, 7500 AE Enschede, The Netherlands.
E-mail: vaneck@cs.utwente.nl.

. J. Engelfriet, D. Fensel, and F. van Harmelen are with Vrije Universiteit
Amsterdam, Faculty of Sciences, De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands.
E-mail: Joeri_Engelfriet@mckinsey.com, {dieter, frankh}@cs.vu.nl.

. Y. Venema is with the Institute for Logic, Language, and Computation,
University of Amsterdam, Plantage Muidergracht 24, 1018 TV
Amsterdam, The Netherlands. E-mail: yde@wins.uva.nl.

. M. Willems is with Quintiq B.V., Het Wilsum 10, 5231 BW
's Hertogenbosch, The Netherlands. E-mail: mark@quintiq.nl.

Manuscript received 16 June 1999; revised 24 Aug. 1999; accepted 22 Nov.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106923.

1. See also, ftp://swi.psy.uva.nl/pub/keml/keml.html on the World
Wide Web.

1041-4347/01/$10.00 ß 2001 IEEE

to specify control of inferences of the object logic, �ML�2 and
MLPM apply dynamic logic ([15], [16]), KARL integrates
ideas of logic programming with dynamic logic, and TFL
uses process algebra in the style of [17]. With the exception
of TFL, the semantics of these languages are based on states
and transitions between these states. �ML�2, MLPM, and
KARL use dynamic logic Kripke style models, and DESIRE
uses temporal logic to represent a reasoning process as a
linear sequence of states. On the whole, however, these
semantics are not worked out in precise detail for most
approaches and it is unclear whether these formalisms
provide apt description methods for the dynamics of KBSs.
Another shortcoming of most approaches is that they do not
provide an explicit proof system for supporting (semi)
automatic proofs for verification.

These shortcomings motivate our effort to investigate
specification formalisms from related research areas to see
whether they can provide insight in the specification of (in
particular, the dynamic part of) KBSs. We have analyzed
related work in information system development, data-
bases, and software engineering. Approaches have been
selected that enable the user to specify control and
dynamics. The approaches we have chosen are:

. Language for Conceptual Modeling (LCM, [18]) and
TROLL ([19]) as examples from the information
systems area. Both languages provide the means to
express the dynamics of complex systems.

. Transaction Logic ([20]), (Propositional) Dynamic
Database Logic (PDDL, [21] and DDL [22]) as
examples for logic programming and database
update languages which provide the means to
express dynamic changes of databases.

. Abstract State Machines ([23]) from the theoretical
computer science and software engineering areas. It
offers a framework in which changes between
(complex) states can be specified.

The informed reader probably misses some well-estab-
lished specification approaches from software engineering:
algebraic specification techniques (see e.g., [24], [25], [26],
[27]), which provide the means for a functional specification
of a system and model-based approaches like Z [28], [29]
and the Vienna Development Method-Standard Language
(VDM-SL) [30], [31], which describe a system in terms of
states and operations working on these states. Two main
reasons guided our selection process. First, we have looked
for novel approaches on specifying the dynamic reasoning
process of a system. Traditional algebraic techniques are
means for a functional specification of a software system
that abstracts from the way the functionality is achieved.2

However, we are precisely concerned with how a KBS
performs its inference process. Although approaches like
VDM and Z incorporate the notion of a state in their
specification approaches, their main goal is a specification
of the functionality and their means to specify control over
state transitions is rather limited. In Z, only sequence can be
expressed and, in VDM, procedural control over state

transitions is a language element introduced during the
design phase of a system. A second and more practical
reason is the circumstance that a comparison with abstract
data types, VDM, Z, and languages for KBSs is already
provided in [12]. Finally, one may miss specification
approaches like LOTOS [32] that are designed for the
specification of interactive, distributed, and concurrent
systems with real-time aspects. As most development
methods and specification languages for KBSs (a prominent
exception is DESIRE) assume one monolithic sequential
reasoner, such an approach is outside the scope of the
current specification concerns for KBSs. However, future
work on distributed problem solving for KBSs may raise the
necessity for such a comparison. Notwithstanding, the
motivation for our choices given in this paragraph, we are
aware that our choice still is somewhat arbitrary.

A complicating factor for our analysis is the fact that
some of the selected approaches are meant to be logics
(Transaction Logic, Database Update Logic), whereas others
are meant to be specification languages (LCM, TROLL, and
Abstract State Machines). The specification languages all
have formal semantics and the logics allow for the
specification of behavior, making the comparison a valid
enterprise. However, when comparing the syntax, for
instance, this difference has to be kept in mind: Specifica-
tion languages usually have an extensive syntax (for the
benefit of ease for the programmer), whereas logics often
have a small (fixed) syntactic vocabulary (making proofs
about the logic shorter).

The paper is organized as follows: First, in Section 2, we
introduce two dimensions we distinguish to structure our
analysis. In order to give the reader an impression of what
specifications of KBSs may look like in the different
approaches and in order to illustrate some criticisms of
the approaches, we will describe an example of a reasoning
task in Section 3. This example will be used as a running
example in the separate treatment of the approaches in
Section 4. We will use a simplified variant of a system for
automated design, known as the propose & revise method for
parametric design ([33]). This method is well-known in
knowledge engineering. It was used in the Sisyphus-II or
VT-task ([34]), where several modeling approaches in
knowledge engineering were compared by applying them
to a common case (i.e., developing a KBS for the config-
uration of a vertical transportation system). In Section 4, we
introduce the different approaches that we have studied;
the main part of this section consists of a detailed
description of the five frameworks mentioned, along with
a specification of the example. Section 5 consists of a
comparison between the above formalisms according to the
two dimensions of our analysis introduced in Section 2.

2 THE TWO DIMENSIONS OF OUR ANALYSIS

In the analysis of the different frameworks, it will be
convenient to distinguish two dimensions (see Fig. 1). On
the horizontal axis, we list a number of concepts which
should be represented in a framework. On the vertical axis,
we list a number of aspects to be looked at for each of the
concepts. We will explain these dimensions in some more
detail.

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 463

2. Process Algebra [17] is an exception. In fact, the semantics of LCM (see
Section 4.5) is based on Process Algebra. In the area of KBSs, Process
Algebra is used in TFL [9].

The behavior of a KBS can, from an abstract point of
view, be seen as follows: It starts in some initial state and,
by repeatedly applying some inferences, it goes through a
sequence of states and may finally arrive at a terminal
state. So, the first element in a specification of a KBS
concerns these states. What are states and how are they
described in the various approaches? Second, we look at
the elementary transitions that take a KBS from one state to
the next. Third, it should be possible to express control
over a sequence of such elementary transitions by
composing them to form composed transitions. This defines
the dynamic behavior of a KBS.

The second dimension of our analysis concerns three
aspects of each of the concepts described above. First of
all, we look at the language of each of the formalisms
(the syntax). Second, we examine the semantics of the
language. In the third place, we look at proof systems
and operationalization. In Section 2.1 and Section 2.2, the
concepts and aspects introduced here are illustrated in
more detail.

2.1 The Three Concepts Involved in the Reasoning
of KBSs

Before explaining the three concepts in more detail, we will
first introduce a distinction between two types of specifica-
tion for systems: external and internal. The former specifies
a system as a black box in terms of its externally visible
behavior. It defines what should be provided by the system.
The latter specifies a system in terms of its internal structure
and the interaction between parts of its internal structure: It
describes how the system reaches its goals. Both types of
specification appear in specification languages for KBSs:
External descriptions may appear at the lowest and at the
highest level of specification of a KBS, while internal
specifications provide relations between the descriptions
at the lowest and highest levels. Current KBS specification
languages do not provide this at all levels of specification.
Actually, the equivalence of the external specification of the
goals (the highest level) and the internal specification of the
reasoning process of the KBS at lower levels is a proof
obligation for the verification of the KBS.

Internal specification techniques are necessary to express
the dynamic reasoning process of a KBS. A complex
reasoning task may be decomposed into less complex
inferences and control is defined that guides the interaction

of the elementary inferences in achieving the specified

reasoning goals. This also allows successive refinement. A

complex task can be hierarchically decomposed into (easier)

subtasks. These subtasks are specified externally and

treated as elementary inferences. If a subtask defines a

computationally hard problem, it can again be decomposed

into a number of subtasks, along with an internal specifica-

tion of how and when to invoke these subtasks.
In the rest of this section, we discuss the three concepts of

a specification in more detail. In Section 4, the five

specification approaches chosen are discussed in terms of

these concepts. In fact, we discuss the representation of

states, elementary transitions, internal specifications of

complex transitions (i.e., hierarchical refinement and con-

trol), and external specifications of complex transitions

together with the relationship to their internal description.

2.1.1 States

With regard to the representation of the states of the

reasoning process, one can distinguish

1. whether it is possible to specify a state at all,
2. whether a state can be structured (i.e., decomposed

into a number of substates)3, and
3. how an individual state is represented.

Not each specification approach in software or knowl-

edge engineering provides the explicit notion of a state.

An alternative point of view would be an event-based

philosophy useful to specify parallel processes (compare

[35]). TFL uses processes as elementary modeling

primitives that are further characterized by abstract data

types in the style of process algebra [17]. No explicit

representation of the reasoning state is provided. The

other approaches from knowledge engineering agree on

providing the notion of a state but differ significantly in

the way they model it. �ML�2, MLCM, and KARL

represent a global state. Still, it may be decomposed in

what is called knowledge roles or stores. DESIRE provides

decomposition of a global state of the reasoner into local

states of different reasoning modules (subcomponents of

the entire system).

464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

3. In a distributed system, a state of the system can be composed of states
of the system's distributed parts. These states are usually called local states.

Fig. 1. The two dimensions of our analysis.

Semantically, the main descriptions of a state are: as a
propositional valuation (truth assignments to basic proposi-
tions, as used in the propositional variants of dynamic logic
and temporal logic ([36])), as an assignment to program
variables (as in the first-order variant of Dynamic Logic), as
an algebra (we will see that in Abstract State Machines), or
as a full-fledged first-order structure (as in the first-order
variants of temporal logic).

2.1.2 Elementary Transitions

Elementary transitions should be describable without
enforcing any commitments to their algorithmic realiza-
tion. A purely external definition is required, as a
specification should abstract from implementational as-
pects. Still, ªelementaryº does not imply ªsimple.º An
elementary transition can describe a complex inference
step, but it is a modeling decision that its internal details
should not represent. However, later on it can be decided
that at a lower level of specification, an internal
specification should be given. Ideally, a modeling frame-
work should provide support for such refinements. After
refinement, the elementary transition is considered to be a
composed transition.

There is a distinction between different modeling frame-
works with respect to the elementary transitions provided.
Some modeling frameworks provide a fixed set of pre-
defined elementary transitions, such as a set consisting of a
few general database update operators. The semantics of
these modeling frameworks give an external specification of
these elementary transitions. Other modeling frameworks
enable the user to define elementary transitions, instead of
providing a fixed set. In this case, the user gives their names
and external specifications of their functionality.

2.1.3 Composed Transitions

One can distinguish nonconstructive and constructive
manners to specify control over state transitions. A
nonconstructive or constraining specification of control
defines constraints obeyed by legal control flows. That is,
they exclude undesired control flows but do not directly
define actual ones. Examples for such a specification can be
found in the domain of information system specifications,
e.g., T R and TROLL. Constructive specifications of control
flow define directly the actual control flow of a system and
each control flow which is not defined is not possible. In
general, there is no clear cutting line between both
approaches, as constructive definitions of control could
allow nondeterminism which again leads to several
possibilities for the actual control. As an example, consider
Dynamic Logic. The control in Dynamic Logic is specified
using programs (with assignment, test, iteration, etc.). Such
an imperative language directly specifies the control flow;
thus, specification of control in Dynamic Logic is construc-
tive. (Indeterminism may be introduced if a choice operator
is present.) This is in contrast to specifications in temporal
logic. A formula that expresses, for example, that a
parameter may never have a certain value in the future
(or fairness and liveliness constraints), only constrains the
possible models, but does not allow us to directly construct
the control flow. Such specifications in temporal logic are
therefore nonconstructive.

Another distinction that can be made is between

sequence-based and step-based control. In sequence-based

control, the control is defined over entire sequences of

states. That is, a constraint or constructive definition may

refer to states anywhere in a sequence. In a step-based

control definition, only the begin state and the end state of a

composed transition are described. For example, in Dy-

namic Logic, a program is represented by a binary relation

between initial and terminal states. There is no explicit

representation of intermediate states of the program

execution. Other approaches represent the execution of a

program by a sequence of states (for example, approaches

based on temporal logic). It begins with the initial state and,

after a sequence of intermediate states, the final state is

reached if there is a final state (a program may also run

forever, as in process monitoring systems).
For the representation of the reasoning process of KBSs,

this distinction has two important consequences: 1) in a

state-pair oriented representation, a control decision can

only be made on the basis of the actual state. A state-

sequence oriented representation provides the history of the

reasoning process. Not only the current state but also the

reasoning process that leads to this state is represented.

Therefore, strategic reasoning on the basis of this history

information becomes possible. For example, a problem-

solving process that leads to a dead-end can reflect on the

reasoning sequence that led to it and can modify earlier

control decisions (by backtracking) and 2) with a represen-

tation as a sequence of states it becomes possible to define

dynamic constraints that do not only restrict valid initial

and final states but that restrict also the valid intermediate

states. Such constraints are often used in specifications of

information systems or database systems.

2.2 The Three Aspects of a Specification of the
Reasoning of KBSs

Perpendicular to the three specification concepts are the

three aspects syntax, semantics, and proof systems/oper-

ationalization. For each of the concepts, these three aspects

together determine how and to which extent a concept can

be used in a specification: They constitute the practical

materialization of the concepts state and (elementary and

composed) transition.

2.2.1 Syntax

Each of the three concepts of a specification is represented

by a part of the syntax of a specification framework. A

spectrum of flavors of syntax can be distinguished. At one

end of this spectrum, specification languages with an

extensive syntax can be found, resembling (conventional)

programming language syntax. Usually, such a language is

specified by EBNF grammar rules, and operators and other

syntactic elements are represented by keywords easily

handled by software tools that support the specification

process. At the other end of the spectrum, languages can be

given by defining a notion of well-formed formulae

composed of logical operators and extra-logical symbols,

using a few grammar rules.

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 465

2.2.2 Semantics

Semantics of specification elements can be viewed as a
function that interprets well-formed formulae or syntactic
expressions in some semantical domain, usually a mathe-
matical structure. A semantic serves two purposes: It
enables the definition of a precise meaning of language
expressions and it enables proofs of statements over
language expressions. To support these purposes, such a
semantics should be formal. Proofs can be formalized and
semiautomatic proof support can be provided if a proof
system based on a formal semantics has been developed.
The semantics should be intuitive and relatively easy to
understand so users are able to precisely comprehend what
a specification means.

2.2.3 Proof Systems and Operationalization

One of the main reasons for developing formal specifica-
tions of a system is to be able to rigidly prove properties of
the system specified. To support such proofs, specification
frameworks should include a formal proof system, which
precisely specifies which properties can be derived from a
given specification. At the very least, such a proof system
should be sound: It must be impossible to derive statements
about properties of a specification that are false. Second, a
proof system should ideally be complete, which means that
it is powerful enough to derive all properties that are true.

Formal specification frameworks can enable the auto-
matic development of prototypes of the system being
specified. Such prototypes can then be evaluated to assess
soundness and completeness of the specification with
respect to the intended functionality of the system being
specified, thus providing restricted but still very useful
support for the validation of specifications. The ªoperatio-
nalizationº of a specification framework is meant to refer to
the possibilities and techniques for such automatic proto-
type generation.

2.2.4 Overview

The two dimensions of our analysis are summarized in
Table 1. In Section 4, for each of the five approaches chosen,
the three aspects of the concepts state, elementary transi-
tions, and composed transitions are discussed with a focus
according to Table 1. Section 5 summarizes the five
approaches chosen in a similar way.

3 THE RUNNING EXAMPLE

The aim of the example we describe below is to illustrate the
different formalisms we are studying, thus facilitating
comparison with respect to specification of the dynamics
of knowledge-based systems. In particular, we use the
example to examine the representation of states of the
reasoning process; the representation of elementary transi-
tions between states and the representation of control over
the execution of transitions. On the one hand, the example
should be nontrivial to allow a good illustration of the
above points. On the other hand, it should not be too
complex; it is meant just as an illustration. We will use a
simplified variant of the Propose & Revise problem solving
method for the task parametric design as our running
example. A full description of this task would take up too
much space, so we will give a rather informal description.
Also, we will not fully specify this example for all
formalisms; rather we will focus on the interesting parts.

During the discussion of the example, we use stores to
represent the state of the reasoning process. A store can be
thought of as a placeholder for information (or knowledge).
We will use inference actions to represent the elementary
transitions between states. An inference action is an action
that takes information from a store, reasons with it, and
outputs the result to another store. We use tasks to represent
composed transitions. A task is meant to perform some
functionality, usually more complex than what can be
performed by a single inference action. We will use a
procedural language for defining control over the execution
of transitions within tasks. Our style is influenced by the
KADS-I [37] and CommonKADS [38] projects but it can be
easily translated into the terminology of most of the other
approaches in knowledge engineering (see [39]).

Our example consists of solving a design problem (of
artifacts, but also for example of schedules). The design
problem is viewed as a parametric design problem, i.e.,
the design artifact is described by a set of parameters. A
design is an assignment of values to parameters. If some
parameters do not have a value yet, the design is called
partial. Otherwise, it is called complete. The design process
must determine a value for each of them fulfilling certain
requirements (described as constraints on the joint

466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

TABLE 1
Evaluation Criteria

assignment of values to the parameters). Examples of this
type of task are: Sisyphus-I (see [40]), where employees
are assigned to places, ECAI '92 workshop example (see
[10]): a simple scheduling task where activities have to be
assigned to time slots, and the Sisyphus-II or VT-task
[34], where an elevator is configured by choosing
components and assigning values.

The central task is to find values for parameters, fulfilling
constraints. The user is allowed to give some parameters
already a value from the start. This task will be called
parametric design and is depicted in Fig. 2.

In Fig. 2, the task parametric design is depicted as an
oval. It is shaded to show that it is a composed task that
should be further decomposed. The task parametric

design gets its input from two stores (represented by
rectangles in Fig. 2): Input and Constraints. The store
Input contains values for parameters given by the user
beforehand (it may be empty). The store Constraints

contains the ªhardº requirements on the (partial) design.
The task parametric design must find a complete
design (an assignment of values to parameters) that extends
the partial design given by the user in Input and fulfills the
requirements of Constraints. If it finds such a design, it
will pass this to the store Output.

Formally, we assume that we have a number of
parameters, p1; . . . ; pn, and, for each parameter pi, a set of
possible values Di for this parameter. A partial design is a
function that assigns a value from Di to pi, for some
parameters pi. A complete design assigns a value to each
parameter. We will provide an informal functional specifi-
cation of the task parametric design by listing the
requirements on a design output by this task. We are aware
that there are much richer and more complex ways for
defining the design task and design problem solving.
However, the purpose of our description of parametric
design and Propose & Revise is to illustrate the different
formalization approaches and not to provide a rich and
detailed picture of design problem solving.

PR1. The initial partial design given by the user (in Input)
may not be modified. That is, the final assignment must
be an extension of the initial assignment.

PR2. The design must be complete: Each parameter must
have a value.

PR3. The design must be correct, i.e., no constraints may be
violated.

This functional specification of the task parametric

design does not provide any information on how to
implement this task. Moreover, parametric design is, in

principle, an intractable task, so we will generally want to
further refine such tasks in the sense that additional,
possibly heuristic knowledge is applied to arrive at an
acceptable and efficient approximation of the original task
[41]. Therefore, a problem solving method which provides
information on how to implement an efficient approxima-
tion has to be chosen. The problem solving method chosen
in this paper is Propose & Revise. The central idea behind
Propose & Revise is that repeatedly, values are proposed for
parameters, treating each parameter in succession. After a
value has been proposed, the partial design is tested to see
whether any constraints are already violated. If not, then a
value for the next parameter is proposed and again tested. If
a constraint is violated, we try to revise the current (partial)
design by changing some values for parameters that were
already assigned a value, in such a way that no constraint is
violated. After this, we again propose a value for a
parameter, until the design is complete. The task para-

metric design can be decomposed into six subtasks
(according to the Propose & Revise method); see Fig. 3.

Below is a list of the six subtasks of Propose & Revise:

. Init: This task initializes the design.

. Propose: This task proposes a value for a parameter
that has not been assigned a value before.

. Test: This task checks whether the current design
violates any constraint.

. Revise: This task corrects the partial design if the
previous task found any violated constraints.

. Evaluate: This task checks if the design is
complete.

. Copy: This task copies the design to the Output

store.

All of these subtasks, except for Revise, are elementary
inference actions. The subtask Revise is a more complex
task, which should be further decomposed. We will not give
the decomposition here, but instead we will just describe its
functionality.

We have already described the stores Input,
Constraints, and Output. The store Design contains
the current design which is a (partial) assignment of
values to parameters. The store Violations holds the
constraints that are violated by the current design. This
store is updated by the Test inference action. The
inference action Evaluate checks whether the current
design is complete. If this is the case, it returns ªtrue;º
otherwise, it returns ªfalse.º As mentioned before, the
subtask Revise, which takes the current design as
input, alters it and outputs the altered design, is more

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 467

Fig. 2. Input and output of the task parametric design.

complex and is therefore not described by an elementary

inference action. Due to space restrictions, we will not

give the full decomposition of this task in terms of

simpler subtasks, but simply give a number of require-

ments on this task:

R1. The altered design is correct, i.e., no constraint is

violated by it.

R2. No new parameter was assigned a value (i.e., Revise

only alters the values of parameters that have a value).

R3. The new design respects the initial design given by the

user. This means that only parameters that were not

given a value by the user may be given a different value.

R4. All parameters that already have a value must still have

a value in the new design.

Finally, we need to define the control between subtasks

of parametric design. One possibility is provided in

Fig. 4. After the initialization, a loop of Propose, Test,

(and if necessary) Revise is entered until a complete,

correct design has been found. In this case, it is copied to

Output.
Parametric design based on (variants of) the Propose &

Revise method has been studied extensively. The interested

reader is directed to [42] and [43] for complete formal

models of parametric design using DESIRE and KARL,

respectively.

4 FRAMEWORKS STUDIED

In this section, we will give a description of all of the
frameworks to be studied. Each description will treat
syntax, semantics, axiomatization, and proof calculi (if
existing). This will be done for states, elementary transi-
tions, internal specification of composed transitions, and
external specification of composed transitions. The running
example will be (partly) specified in all approaches. In
particular, for each approach, a formalization of the
functional specification (if possible) and of the problem
solving method will be given. In Section 5, we will compare
the different approaches using the two dimensions intro-
duced in Section 2.

4.1 Transaction Logic

Transaction logic (or T R, see [44], [45]) is designed
especially to deal with the dynamics of database updates
and logic programming. It is an extension of predicate logic
meant to deal with dynamics in a clean and declarative
fashion. The idea is to combine predicates that express
properties of states with predicates that express properties
of transitions, into a single amalgamated logic. The main
elements of T R are transitions: queries, updates, and
combinations of these. Queries do not change the database,
updates do. Using a sequence operator (
), one can
combine primitive state transitions (as specified in so-called
oracles) into more complex transitions.
T R does not make a syntactic distinction between

(nonupdating) queries and actions with side effects. This
is considered a feature, because it allows a uniform
treatment of queries and actions. However, as indicated in
Section 1, from a knowledge engineering perspective, this
blurring of the dynamics/statics distinction is not desirable.
It is possible, of course, to give descriptive names to actions:
The action which inserts a fact ªbº into the database could
be called ins_b. Transaction logic offers a clean treatment of
the assert and retract operators in Prolog. Indeed, a
semantics is given for the interaction between logical

468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 3. Knowledge flow diagram of Propose & Revise.

Fig. 4. Control flow of Propose & Revise.

operators and updates (e.g., :assert�X�) that is lacking in
other work.

4.1.1 Syntax

It is important to appreciate the distinction between
transitions and transactions in T R. Transitions are the
elementary steps that update one state into another,
whereas transactions are complex compositions of these
elementary transitions. One should think of transaction
formulae as formulae that are true for sequences of states.
Syntactically, however, there is no distinction between state
formulae, transition formulae, and transaction formulae.

Transaction formulae are used to combine (simpler)
transactions into more complex ones. All classical logical
connectives can be used to define complex transactions, by
stating the logical relationships that must hold. One special
connective,
, expressing sequence is added to specify
dynamics. So, the dynamic meaning of the formula �
 is
that first � and then holds.

Other dynamic operators are defined in terms of this
operator. An example of such an operator, which will be
used in the running example, is) . The formula �)
means that whenever � is true, must be true immediately
thereafter. Formally, �) � :��
 : �.

An example is a transaction formula that defines a
transaction design as an initialize transaction followed by a
propose&revise transaction (both possibly defined some-
where else).

design initialize
 propose&revise:
The strange thing is that this formula does not show

syntactically that it defines a dynamic transaction, even
though
 is used. If both initialize and propose&revise are
ordinary database predicates (which may be true or not in a
database state), then design is just a derived predicate which
may be true or not in the database state. If both operands of
a
-operators are static, then
 behaves as classic conjunc-
tion. Contrary to what the name suggests, transaction
formulae can also express static properties, like ªa con-
straint is violated if the values assigned to the n parameters
are illegal:º

violation�C� constraint�C; V1; . . . ; Vn�
^ design�P1; V1� ^ . . . ^ design�Pn; Vn�:

In a specification language, one may want to show
syntactically which formulae describes states and which
correspond to proper transactions. We will use the special
predicate state which is defined to be true on all states (or,
to be precise, on sequences of states of length 1), and false
on all sequences of states of length greater than 1. For a
formula �, we will abbreviate � ^ state by h�i. This formula
is only true on states where � is true.

It is insightful to consider an example of a while-loop
specified in transaction logic.

while �htesti
 do
 while� _ h: testi:
This rule states that the transaction while is true if either

test is false in the first state, or else if test is true, after which
the sequence do and while is true. The procedural reading of

this rule is: In order to perform while, either test must be
false, or if it is true, then do must be performed, after which
while must be performed again.

Similar to Prolog for logic, there is an executable Horn
version for T R in which all transaction formulae have to be
implications with a single atom as head and a sequence of
atoms as body. A generalized Horn version, including
stratified negation and negation-as-failure is also defined.

A nice feature of T R is that one can express formulae
that constrain the possible sequences. The formula below,
for instance, makes sure that revise is never performed twice
in a row.

:�revise
 revise�:
So, transaction logic combines the constraining and

constructive specification styles.
The style of control in T R can be characterized as

sequence-based because we can express properties that
must hold over sequences of states of any length. An
important means of control (to which the Horn version is
restricted), is the definition of procedures. Iteration (like the
while-loop above) can be obtained by recursion.

4.1.2 Semantics

Transaction logic describes the dynamics of database
updates, which is reflected in the semantics. A set of states
exists representing all possible database states, and transac-
tion formulae are interpreted over sequences of such states.
This is in fact the power of T R: By assigning an
interpretation to a sequence of states, it is possible to
specify conditions on intermediate states and to use logic to
specify control.

Transaction logic is parameterized by a pair of oracles
Od and Ot. The domain of these oracles is a set of state
identifiers. The oracles map a state identifier, respectively,
a pair of state identifiers to a set of first-order formulae.
Then, � 2 Od�D� means that � is true on the database
state identified by D. Similarly, � 2 Ot�D1;D2� means
that � is true on the transition from D1 to D2. The
intuitive meaning of this is that � is the name of a
transition that can take D1 to D2.

The domains of these oracles define the set of paths,
i.e., finite sequences of state identifiers: hD1; . . . ;Dki,
where k � 1. Each formula will be interpreted with
respect to such paths. Formally, a model or path structure
is a triple M � hU; IF ; I pathi. U is a set called the domain
of M and IF is an interpretation function of the function
symbols over U . Together these define the class of all
first-order structures denoted by Struct�U; IF � (so, this
class contains all structures of the form hU; IF ; IPi, where
IP is an interpretation of predicate symbols on U).
Finally, I path is a mapping that assigns to every path a
structure in Struct�U; IF � [f?g, where ? is a special
model in which all formulae are true.4 This mapping
must obey two conditions: compliance with the data oracle,
so if � 2 Od�D�, then I path�hDi� �� � (where �� denotes
the classical satisfaction of a formula in a first-order
structure, with respect to the variable assignment �), and

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 469

4. The reason for including ? here is to localize inconsistency to the
states wherein it occurs.

compliance with the transition oracle so if � 2 Ot�D1;D2�,
then Ipath�hD1;D2i� �� �. The Di are just state identifiers.
The interpretation function assigns a meaning (semantics),
which consists of first-order structures with domain U , to
these identifiers (and, in fact, to every sequence of
identifiers). The oracles constrain the possible interpreta-
tion by stating which formulae must at least be true in
the meaning assigned to these identifiers (and pairs of
identifiers).

Transaction formulae are interpreted with respect to a
sequence of states and a variable assignment. An atomic
statement P �t1; . . . ; tn� is true in a model M with respect to
path � and variable assignment � iff Ipath��� �� P �t1; . . . ; tn�.
The interpretation of the standard connectives is defined as
usual. The only special case is for the
-operator. Intuitively,
�
 is true on a path if first � and then is true. Formally,
I path�hD0; . . . ;Dni� �� �
 iff it is possible to split the path
hD0; . . . ;Dni into two paths, hD0; . . . ;Dii and hDi; . . . ;Dni
such that � is true in M with respect to the first path, and is
true in M with respect to the second. A transaction formula
is true in a model if it is true in the model with respect to
every possible path. A set of transaction formulae (a
program, P) is true in a model if all formulae are true in
the model.

The idea behind entailment in T R is that we can
evaluate a transaction � with respect to a sequence of
databases on the basis of the specification of dynamics
(transitions and transactions). Given a program P we say
that � is executionally entailed,

P;D0; . . . ;Dn � � �1�
if and only if, for every model M of P, we have that
M; hD0; . . . ;Dni � �. The statement

P;D0 ÿÿÿ � �
expresses the fact that there exists a sequence D0; . . . ;Dn

(for some n) such that (1) holds. This statement is especially
useful, because it reflects the situation where the user asks
to execute a transaction � from a database D0 and the result
is a sequence of states, or in other words, an execution of the
program P.

Although the semantics may seem very natural, the
possibility of interpreting both (intuitively) static and
dynamic formulae with respect to sequences of any length
gives rise to a number of subtleties one only discovers after
very careful studying. To give an example, it may be the
case that P;D0 ÿÿÿ � � and P;D0 ÿÿÿ � :�. The reason
is that there may be more possible routes through the states,
some of which satisfy � and some of which satisfy :�. Note
that it is not possible that both P;D0; . . . ;Dn � � and
P;D0; . . . ;Dn � :�.

4.1.3 Proof Calculi

The authors describe a proof procedure for the Horn
version of T R, called serial-Horn T R. However, a con-
straining approach to specification often requires non-Horn
queries. Work on a more general logic of state change with a
sound and complete proof system has been announced in
[46]. Translating statements of T R into this logic would
yield an indirect proof procedure for transaction logic.

In the Horn version, the program must consist of serial-horn

rules, that is, formulae of the form a0 a1
 a2
 . . .
 an,

where all ai are atomic formulae. A query is an existentially

quantified serial conjunction, e.g., an expression of the form

�9X��a1
 . . .
 an�. The data oracle must be a so-called

ªGeneralized Horn Oracle.º Finally, the program must be

ªindependentº of the data oracle, which means that predicate

symbols that occur in the rule heads must not occur in rule

bodies in the data oracle.
Given these restrictions, an inference system is defined

that consists of sequents of the form

P;D1 ÿÿÿ ` q;

where q is a serial-horn query. Such a sequent should be

generated if and only if there is a sequence of states

D1 . . . Dn such that P;D1; . . . ;Dn � q. The inference system

consists of three rules that are: apply a transaction

definition, query the data oracle, and perform an update

(from the transition oracle). Deduction basically amounts to

executing these rules. When reasoning in a forward

direction (or bottom-up) we start with an initial database,

and systematically update it to form a final database.

4.1.4 Operationalization

Execution of a T R program means finding a sequence of

states that satisfies the query, given the program and the

oracles (where we might be most interested in the last

state in this sequence: the result of performing the query).

Actually, it is possible, in principle, to read off such a

sequence from a proof, but this is difficult since there is

much freedom in a proof. The order in which the sequents

appear in a proof is not fixed and sequents may appear in

a proof which are not needed. Executional deduction is a

restricted version of the inference procedure which does

not allow this freedom. Formally, the order of sequents

seq1; . . . ; seqn is restricted by assuming that seqi is

obtained only from the previous sequent seqiÿ1. Further-

more, the first sequent must be of the form P;D ` �� and

the last sequent must be of the form P;D0 ÿ ÿÿ ` �9X��.

By reading off the databases in the sequents in the reverse

order (from the last sequent to the first), and only when

the rule dealing with a database update has been used, we

get the desired execution path. This restricted version is

also sound and complete.

This executional deduction corresponds to the opera-

tional reading of Horn rules, where (in the forward direction)

one either applies a transaction definition (and proceeds to

prove the body), or one queries the database (by testing the

truth of a (static) atom), or one updates the database (by

applying an elementary transition). Thus, a transaction

formula, in Horn form, is read declaratively as ªthe head is

true or the body is false,º and operationally as ªto execute the

head it is sufficient to execute the body.º For instance, the

while-loop expression given above is read operationally as

ªwhen we execute the while, either the test succeeds and is

followed by do and another loop, or the test fails.º

470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

4.1.5 Running Examples

The conventions used in the T R formalization of Propose &

Revise will also be adopted in the other formalizations,

whenever appropriate.
Introduction. To specify Propose & Revise in transaction

logic, we first need to determine which functions and

(basic) predicates we will use to represent a state. For every

store, we will define a predicate:

input�P; V �;
output�P; V �; and

constraint�C; V1; . . . ; Vn�;
where P is a parameter name, V and V1; . . . ; Vn are

values and C is a constraint name. The meaning of

constraint�C; V1; . . . ; Vn� is that assigning V1; . . . ; Vn to the

parameters p1; . . . ; pn is not allowed, and this is part of

the constraint C. Note that this formulation of a

constraint requires a value for each parameter, even if

only some of the parameters are constrained.
These predicates are all meant to be state predicates, which

means that in all formulae we write, we should use

houtput�P; V �i (or output�P; V � ^ state). In order to avoid

cluttering of (different sorts of) parentheses, we will omit

these parentheses �h i�, but the reader should insert them

around all static predicates. For a negated predicate, these

parentheses must include the negation::output�P; V � should

be read as h:output�P; V �i. The formula :houtput�P; V �i is

equivalent to :output�P; V � _ :state, which is true on all

sequences of length greater than 1, clearly not the intended

meaning.
In principle, since every parameter has at most one

value, we might have wanted to use a function (e.g.,

input�P � � V). Unfortunately, this is not possible in

transaction logic, since functions are static, which means

that they cannot change value between states. As the

relations input and output are functional, we have to add an

axiom to the program stating this:

�8P; V1; V2��output�P; V1� ^ output�P; V2� ! eq�V1; V2��:
Because equality is not a built-in operator in T R, we

must use eq�V1; V2� as equality predicate, and moreover add

all axioms of equality (reflexivity, symmetry, transitivity) to

the program. These axioms are straightforward but neces-

sary to get the intended models.
Conceptually, not every parameter needs to have a value

in input. This would mean that the relation input should be

a partial function. However, as a constraint refers to all

parameters, we have to make sure that every parameter has

a value. Therefore, we introduce a special value, undef ,

where input�P; undef�means that the parameter P does not

have an input value. We will use constants pi (with 1 � i �
n to denote the set of n parameters. The condition that every

parameter has an input and output value (possibly undef) is

now formulated as:

n̂

i�1

�9V ��input�pi; V ��
n̂

i�1

�9V ��output�pi; V ��:

We have made one simplification in the above discus-
sion: the variables in the formulae should be typed (e.g., V
should be of type value). Transaction logic is not typed, but
we can easily introduce unary predicates to describe such
types. A predicate value�v� for instance could denote that its
argument is a value. The above formulae quantifiers should
be changed to incorporate typing. For example, �9V ��. . .�
should be replaced with �9V ��value�V � ^ . . .�. We have not
done this in order to keep the formulae readable.

Functional Specification of parametric design.
The parametric design task will be specified in
transaction logic by a complex transaction we will call
parametric design. First, we will give the functional
requirements for this task, which will be specified as
transaction formulae in the program.

First of all, the input may not be modified by
parametric design (PR1):

n̂

i�1

�8V ���input�pi; V �
 parametric design�

) output�pi; V ��:
This means that if a parameter has some input value (in
some state) and we perform parametric design, then after-
wards the parameter should have the same value in the
output.

The second requirement (PR2) is that the design must be
complete:

parametric design)
n̂

i�1

:output�pi; undef�:

To complete the specification, we should add the last
requirement, stating that no constraint is violated (PR3):

parametric design) �8V1; . . . ; Vn�
� n̂

i�1

output�pi; Vi�

! :9C constraint�C; V1; . . . ; Vn�
�
:

It is possible to leave the specification as it is at this point
and keep the implementation of parametric design out of
the program. In this case, the program contains only these
three rules, which constrain the possible models. In general,
many sequences of states may satisfy this functional
specification, and parametric design may be true on
sequences of different length.

In T R, the problem solving method Propose & Revise,
which implements the specification given above, can be
given in two ways: within T R, as treated in the next section,
or outside T R, using the oracles. Such an outside
implementation will define a state oracle, which defines a
state for each instantiation of input and constraint without
output, as well as corresponding states with the output

computed. We define the transition oracle by:

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 471

parametric design 2 Ot�D;D0�
for all pairs D, D0 that ªdoº parametric design. We could
then prove that this implementation satisfies the functional
requirements, for example:

P;Dÿÿÿ ` arc
 parametric design

 :
n̂

i�1

:output�pi; undef�
" #

:

The standard predicate arc (that is true only on elementary
transitions, i.e., paths of length 2), is useful to test all
possible starting states. This query will only succeed if there
is a sequence of states such that jumping to a random other
state and then performing parametric design violates the
requirement. If no such path is found the programmer can
be satisfied that the implementation works correctly. Of
course, these queries depend on the existence of a general
proof theory (not given in [46]) that can handle non-Horn
requirements.

Conceptually, what we are doing above is to implement
parametric design outside the program (in the oracles). It is
a feature of T R that it allows such external implementation,
while at the same time allowing the functionality thereof to
be verified.

Decomposition and Control of Propose and Revise.
Above, all dynamics were implemented by the oracles and,
thus, the dynamics in a sense remains hidden. In this
section, we will specify the running example inside T R, by
implementing different elementary transitions in the transi-
tion oracle, namely, for init, propose, test, revise, evaluate,
and copy, instead of parametric design. The relationship
between parametric design and these elementary transi-
tions, i.e., the decomposition and control, is then specified
by the transaction program, which we will give below. As
might be expected, the decomposition of parametric design
is a while-loop.

parametric design init
 pr-loop
 copy
pr-loop propose

test

�9Cviolated�C�) revise�

�evaluate

evaluate-complete _
�:evaluate-complete
 pr-loop��:

The predicates that are used in the program above are

all defined either in other rules of the program or by the

oracles. For instance, test is a transition that deletes all

expressions of the form violated�C� and replaces them by

the new set of violations. Also, evaluate-complete is

defined by the data oracle; we assume that in every state,

it is either true or false, i.e., for every D, we either have

evaluate-complete 2 Od�D� or :evaluate-complete 2 Od�D�.
And, again, the reader should insert the h i parentheses

around it, as we only want it to be interpreted on states.

By just looking at the above rules, it is not possible to

decide whether test is an elementary transition, a static

query, or a transaction that is in turn decomposed. From a

modeling perspective, this kind of mixing of statics and

dynamics is not a transparent way of specification: The

specification obscures the difference between (static)

declarative domain knowledge and (dynamic) methods

used to reason about the domain. As we mentioned

before, by descriptively naming transactions and static

queries, part of this problem can be alleviated.
Particularly insightful is the expression stating that revise

must happen immediately after finding out that there are

violations. What we want is an expression that is true on a

sequence of length (at least) two, if there are violations, but

in a single state, if there are no violations. This is why we use

the double arrow in 9C violated�C�) revise.
Having refined the initial (functional) specification, we

would like to be able to prove higher level requirements

(PR1 through PR3) assuming that lower level transitions are

implemented correctly. We would like to test the decom-

position and control without having implemented the lower

levels (yet). What we want is to deduce that the decom-

posed program together with new requirements (or,

functional specification) for each of the new transactions

(see below) satisfies the higher-level requirements.
The revise Task. The decomposition in the previous

paragraphs describing the decomposition and control of

propose and revise uses a transaction, called revise, which

should change occurrences of design�P; V �, i.e., the cur-

rently proposed values of the parameters, in order to fix the

violations. We will make the assumption that the predicates

input, output, and design are state formulae, i.e., that they

do not occur in the transition oracle, and that the state

oracle contains each predicate, or its negation, for every

state. As we did for parametric design, we can add

formulae to the program stating requirements on this

transition:

. The altered design is correct (R1):

revise) �8V1; . . .Vn�
� n̂

i�1

design�pi; Vi�

! :9Cconstraint�C; V1; . . . ; Vn�
�
:

. The task revise does not propose values (R2):

n̂

i�1

�design�pi; undef�
 revise�) design�pi; undef�:

. The input is respected (R3):

n̂

i�1

�8V ��input�pi; V �
 revise�) design�pi; V �:

Finally, it is not allowed to set a parameter value to undef

if it had a value unequal undef before (R4):

n̂

i�1

:
�
�design�pi; undef�
 revise�) :design�pi; undef�

�
:

The evaluate Task. For evaluate, the following require-

ment is formulated:

472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

evaluate) evaluate-complete$
n̂

i�1

:design�pi; undef�
 !

:

This solution clearly shows that if we want to make a
distinction between statics and dynamics, we are forced to
separate the predicates. The state predicate evaluate-complete
is used to test the state and the dynamic predicate evaluate is
used to control the reasoning process.

4.1.6 Conclusions

A nice thing about T R is that one can state both constraints
and decompositions in the transaction program. The former
constrain the possible models, whereas the decomposition
(and the oracles) construct the implementation. Thus, T R
nicely integrates constraining dynamics with constructive
dynamics.

The use of oracles and a program allows successive
refinement. At any moment during refinement, there will be
a set of elementary transitions which can be implemented
using the oracles, or using a functional specification. It is
very easy to refine a specification by replacing the
functional specification by decomposition rules in the
program.

Transaction logic has both a declarative and an opera-
tional proof system for a Horn fragment. Work is in
progress to obtain a proof system for the general case, by
translating T R into a more general logic of state change.

One of the striking aspects in T R is that there is no
division of static and dynamic predicates. This is consid-
ered an advantage by the authors as dynamics and statics
are treated uniformly. However, most people studying
dynamic phenomena in knowledge-based systems agree
that the declarative knowledge about the domain should be
clearly separated from the specification of the methods used
to reason about the domain. It is possible to make a
distinction between static (query) and dynamic (action)
predicates by using a different naming scheme.

Some other disadvantages from the viewpoint of knowl-
edge-based systems are also due to the fact that T R is
geared toward specification of object-oriented databases.
Control is scattered: Elementary transitions are defined in
the transition oracle, composed transactions are defined in
the program, and also (complex) queries may impose
constraints on the dynamic behavior. The dataflow is not
clear and states are sequence-based and not modularized.

4.2 Dynamic Database Logic

In this section, we discuss Dynamic Database Logic, as
proposed in [22] and [21]. Our treatment is divided in
two parts: We first discuss the propositional language
PDDL [21], followed by a discussion of the first-order
language DDL [22].

Both PDDL and DDL are intended as logics to reason
about state and state change, particularly in database
applications. As the names suggest, these logics are based
on dynamic logic [15]. Before we go on to discuss these
languages in detail, we briefly outline the relation
between various languages based on dynamic logic. All
these languages characterize states by truth values of
predicates holding in a state. The languages differ in the
way they characterize transitions between states. In the

original proposal for PDL (Propositional Dynamic Logic)
from Harel, transitions are only characterized implicitly.
No operational definitions can be given for how to
compute transitions. They can only be characterized by
defining the properties of the original and final state of a
transition: a formula such as p! ���q partially charac-
terizes the transition � by stating that if � is executed in a
state where p holds, and if � terminates, the result will be
a state where q holds.

In the first-order version of dynamic logic (DL), transi-
tions can be described explicitly: A state is characterized by
the values of a set of variables. Consequently, in DL,
operational definitions can be given for how to compute
transitions: An elementary transition is defined by assign-
ing a value to one of these variables (e.g., x :� 1). Composed
transitions can be defined by composing elementary
transitions via sequence, iteration, and choice operators.
Both the propositional language PDDL and the first-order
language DDL follow DL by providing explicit definitions
of transitions. However, whereas in DL, transitions can only
be defined in terms of assignments to variables, PDDL and
DDL define transitions in terms of truth-assignments to
propositions (PDDL) or predicates (DDL). In this respect,
DDL and PDDL are closely related to the more recent
proposals for the language MLPM [8], which allows the
explicit definition of transitions by assigning values to truth
of predicates, and of MLCM [47], which also allows for the
assignment of function values. We now turn to the
discussion of PDDL and DDL, respectively.

4.2.1 The Propositional Language PDDL

PDDL features both passive updates and active updates
(i.e., updates which trigger derivation rules). These atomic
update actions can be combined by a regular language, as in
PDL. In [22, p. 103], the authors claim a number of
achievements for PDDL, the most important of which are
the development of a semantics based on Kripke structures,
a sound and complete proof system for ªfullº structures
(i.e., structures containing a world for all possible valua-
tions), and a Plotkin-style operational semantics.

Syntax. In PDDL, a database is described using a
database schema �S;C;R�, consisting of a signature S, a
set of database constraints C, and a set of derivation rules R.
The signature S defines the propositional symbols that can
be used to formulate the derivation rules in R, which are
program clauses as in logic programming, and to formulate
the constraints in C. Predicates are divided in derived
predicates (all predicates that occur as a head in some
derivation rule) and base predicates (all other predicates).

In PDDL, a database state of a certain database schema is a
set of sets of literals. A set of literals stands for the
conjunction of its elements and is called a conjunction set. A
set of such conjunction sets stands for the disjunction of its
elements.

Update programs describe how to get from one database
state to another. Update programs are regular expressions
composed of atomic updates. PDDL defines two types of
atomic updates: passive and active updates. For any atom p,
the passive updates are Ip (intuitively: ªset p to trueº) and
Dp (intuitively: ªset p to falseº). For any atom p and set of

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 473

derivation rules R, the active updates are IRp and DRp. IRp
sets p to true and then recomputes all the derived predicates

of R (those occurring in the heads of clauses of R, where R

is a definite logic program). Similarly, DRp sets p to false

and then recomputes all the derived predicates of R. These

active updates are only defined for the base predicates

(those predicates not occuring in the head of any clause in

R). For the computation of derived predicates, the minimal

Herbrand model for logic programs is used.
Update programs (composed transitions) can be formed

from these atomic updates (elementary transitions) in the

usual way (aÁ la PDL) by sequence, choice, iteration, and test.

For example, the transition IRq; p?; Ir first sets q to true and

derives new values for all the derived predicates, then tests

whether p holds, and, if so, sets r to true. Formulae in PDDL

are defined as in Propositional Dynamic Logic, containing

modal formulae of the form ���p, where p is a formula, and

� is any transition consisting of I , D, IR, and DR and the

composition operations. (The constraints C in a database

schema �S;C;R� consist of these formulae.)
Declarative Semantics. The declarative semantics of

PDDL is based on the notion of possible worlds. A possible

world is defined as a truth assignment to all the predicates.

The truth of modal formulae is determined by an accessi-

bility relation between these worlds in the usual way, i.e.,

standard models in DL (the accessibility relations are

determined by the set of possible worlds). Thus, the set of

possible worlds plus the accessibility relation form a Kripke

structure as usual.
As an example, consider the database schema with

signature S, constraints C, and derivation rules R with

S � �p; q; r; s�
C � f�IRp�q; �IRr�s; r! sg
R � fp! qg

which states that the database contains formulae over

p; q; r; s, and that q must hold after active insertion of p, s

must hold after active insertion of r, and whenever r holds,

s must hold. Note that the constraint �IRp�q is obeyed

automatically because of the derivation rule p! q. The

constraint �IRr�s is not obeyed automatically because r! s

is only a constraint, not a derivation rule. (Example taken

from [21, p. 33].)
Fig. 5 is an example model of this database, in which

some links between possible worlds are shown.

Proof Calculus. Spruit et al. [21] presents a proof
calculus for PDDL which is sound and complete for full
Kripke structures, i.e., Kripke structures in which a world
exists for every possible combination of truth values for all
atoms in the signature. For example, the structure in Fig. 5 is
not full, since (among others) there is no world for
:p;:q;:r;:s. Spruit et al. [21] also show that the proof
system is sound and complete for structures in which all
given constraints are satisfied and no world with a
valuation different from the valuations of the worlds
already in the structure can be added without violating
some constraint. The proof system for PDDL is built by
taking an existing proof system for PDL and adding axioms
that describe the behavior of the atomic update actions. For
example, the axioms for passive insertion read:

�Ip�p insertion axiom
q! �Ip�q positive frame axiom
:q! �Ip�:q negative frame axiom
hIpitrue successor existence

�Note : full structures only!�:
Similar axioms hold for active insertion and the deletion
operators.

Operational Semantics. Whereas the declarative seman-
tics states the required accessibility relation between
individual worlds, as given above, the operational seman-
tics provides the required relations between entire database
states (see Fig. 6). Remember that in PDDL, a database state
of a certain database schema is a set of sets of literals. A set
of literals stands for the conjunction of its elements and is
called a conjunction set. A set of such conjunction sets
stands for the disjunction of its elements.

This operational semantics is given in the form of
transition rules between database states, such as:

hIp; �i ! f�c n f:pg� [fpg j c 2 �g
which states that via Ip, we move from a database state � to
a database state where all worlds in � are changed by
enforcing p. There is a form of equivalence between the
declarative and the operational semantics which states that
an action � results in the transition from a database state �
to a database state �0 iff for all worlds w0 2 �0, there is a
world w 2 � such that �w;w0� 2 m���, where m��� is the
function that assigns to each update program � its
interpretation as an accessibility relation on possible
worlds.

4.2.2 The First-Order Case

Spruit et al. [22] and [48] present DDL, a first-order
generalization of PDDL which has as additional aim the

474 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 5. Example PDDL model structure.

Fig. 6. Database states and worlds in PDDL.

possibility of object creation and parallel updates. In this
section, syntax and semantics of DDL will be presented.

Syntax. In DDL, the atomic updates are of the form
ª&fx1; . . . ; xngIp�t1; . . . ; tn� where �º (called conditional
insertion), with the intended meaning that p�t1; . . . ; tn� is set
to true for all values of x1; . . . ; xn that make � true.
Similarly, ª&fx1; . . . ; xngDp�t1; . . . ; tn� where �º (called
conditional deletion) sets p�t1; . . . ; tn� to false for all values
of x1; . . . ; xn that make � true. These two operations can be
combined into the update operator U , which ªcopiesº the
truth values of � to p: ª&fx1; . . .xngUp�t1; . . . ; tn� where �º
sets p�t1; . . . ; tn� to true for all values of x1; . . . ; xn, where � is
true and to false where � is false. This operator can be
defined in terms of insertion and deletion as follows:

fx1; . . . ; xngUp�t1; . . . ; tn� where �

� &fx1; . . .xngIp�t1; . . . ; tn� where �;

&fx1; . . .xngDp�t1; . . . ; tn� where :�:
Because of this definition in terms of I and D, the U
operator does not affect any of the semantic properties of
the language.

Conceptually, these are parallel updates, which update
multiple instances of p�t1; . . . ; tn� at once. In contrast, the
expression ª��xn; . . . ; xn��, where �º executes � for one of
the possible values of x1; . . . ; xn which make � true. As
before, composed transitions are formed from elementary
transitions by sequence, test, iteration, and choice.

The combination of parallel updates and conditional
choice make DDL very close to the more recently proposed
language MLPM [8], with the parallel updates correspond-
ing to MLPM's � operator, and the conditional choice
corresponding to MLPM's � operator. Notice that the active
updates of PDDL are no longer present in DDL. Presum-
ably, the parallel updates are considered a sufficiently
powerful replacement.

Although the semantics of DDL assumes a (single)
domain for the interpretation of constants (DDL does not
have functions), which is the same for all possible worlds,
object creation can nevertheless be modeled by introducing
a special existence predicate E. Object creation can then be
expressed as:

� fxgIE�x� where :E�x�:
Semantics. The semantics of DDL is similar to that of

PDDL, with possible worlds defined as truth assignments to
predicate symbols, and accessibility relations between the
possible worlds for each of the elementary and composed
transitions. The ontology of possible worlds as truth
assignments to predicates should be contrasted with the
semantics of classical dynamic logic, where possible worlds
are instead variable assignments, and where the interpreta-
tion of predicate symbols is fixed across all worlds.

Proof Calculus. As with PDDL, an axiomatization for
DDL is built from a standard axiomatization for dynamic
logic, extended with axioms for DDL's new operators.
Again, this axiomatization is sound and complete only for
full structures (and domains have to be finite). A small
example shows how to use DDL for a correctness proof of a
particular update program � that copies the extension of a

unary predicate q to another unary predicate p. The
specification for this program is given as

SPEC � 8y�q�y� $ ���q�y��^
���8y�q�y� $ p�y��

(i.e., the extension of q remains unchanged by execution of
�, and after the execution of �, p has the same extension as
q). If we define the program � as:

� � &fxgDp�x� where true; �&fxgIp�x� where q�x��;
then we can prove that SPEC holds for the above definition
of �. (Example from [22, p. 114].)

4.2.3 Running Example

The discussion of the running example in DDL starts with
some general remarks on the basic structure of the example
in DDL and on how information on types is represented in
DDL.

Remarks (Basic Idea). The basic idea of the specification
is to treat all input and output roles of an inference action as
predicates. Inference actions can then be formalized as
update programs, which make assignments to their output
roles.

For example, an inference action union, with input roles
in1�X1�; in2�X2� and output role out�Y � can be specified as
assigning ªtrueº to all instances of the output role out�Y � for
which Y is the union of the two input roles:

union � &fY g I out�Y �
where 9X1; X2 : i1�X1� ^ i2�X2�^

8x�x 2 Y $ x 2 X1 _ x 2 X2�:
All this is very close to some existing literature on
formalization of KBS, such as [49] and the simplified
version thereof in [50].

In general, for an inference action T , there will be a
functional specification Tspec�X1; . . . ; Xn; Y � of its input/
output-relation. We then need an implementation Timpl of
the inference action such that: if X1; . . . ; Xn are values for
the input roles, and the functional relation holds between
X1; . . . ; Xn and Y , then after execution of Timpl, Y is a value
of the output role:

in1�X1� ^ . . . ^ inn�Xn� ^
Tspec�X1; . . . ; Xn; Y � $ hTimpliout1�Y �:

�2�

A trivial implementation of Timpl would be:

Timpl � &fY g U out1�Y �
where in1�X1� ^ . . . ^ inn�Xn� ^ Tspec�X1; . . . ; Xn; Y �

�3�
because (2) would follow immediately. Of course, instead of
this, we would rather want an implementation which
realized Tspec by implementing it by program expressions,
instead of simply enforcing it as a postcondition as in the
above.

Types. To simplify the presentation of the running
example in DDL, we treat DDL as if it were a typed
logic. This can be simply encoded by introducing unary

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 475

predicates for all the types in the standard fashion. We

will leave these types implicit in the variable names.

Thus, a formula like

8P9V : output�P; V �
should be read as

8P9V : parameter�P � ! value�V � ^ output�P; V �;
in order to include all the required type-restrictions. This

translation is entirely mechanical and does not change the

logical expressiveness of the language. It is similar to our

treatment of T R in Section 4.1.
The parametric design Task. Fig. 7 presents the

functional specification of the task parametric design

expressed in DDL. In order to be able to give an

implementation for this functional specification, the infer-

ence actions have to be specified. We will only give a

functional specification of the inference action revise.
The Revise Inference Action. Fig. 8 presents the func-

tional specification of the inference action revise. As a

conjunction, these four conditions together form the
formula Tspec from (2) for the inference step revise.

Implementation of Propose & Revise. Using the
programs for the smaller inference actions, we can specify
the overall program for Propose & Revise by almost literally
transcribing the control flow from Fig. 4 in Section 3. The
overall program for Propose & Revise is presented in Fig. 9.
Note that although constructs like ªrepeat...untilº and
ªif...then...endifº (used in the specification in Fig. 9) are
formally not part of the syntax of DDL, they can easily be
defined. Notice the special use of the inference action
evaluate: It functions as a predicate (in this as the stop-
condition for the loop) and does not do any updates. This
corresponds to the fact that in the knowledge flow diagram
(Fig. 3) evaluate has no outgoing arrows. Its sole purpose is
to control the loop, not to produce any output.

Concluding. Notice the striking resemblance between
the above control-loop and the description of the control
loop in our example in Fig. 4, Section 3. We suspect that this
is largely due to the fact that DDL is based on Dynamic
Logic, which was also the basis for the KBS specification
languages KARL [3] and �ML�2 [7]. This meant that the

476 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 7. Functional specification of the task parametric design in DDL.

Fig. 8. Functional specification of the Revise inference action in DDL.

Fig. 9. Implementation of Propose & Revise in DDL.

specification of the running example in Section 3 is already
written largely ªPDDL-style,º and very little further
changes remained to be made.

4.2.4 Discussion

There is a remarkable similarity between PDDL and the
language MLPM [8], which was independently developed
specifically for specifying the control of KBS. This
similarity was also apparent from the similarity between
the informal description of our example in Section 3 and
the PDDL formalization given above. This suggests closer
links between the control of deductive databases on the
one hand and knowledge bases on the other hand than
have been investigated until now. The most important
difference between PDDL and MLPM lies in the active
updates IHp and DHp which are present in PDDL, but
are lacking from MLPM.

Finally, the origin of PDDL as a database specification is
apparent in the restriction that only literals can be added or
deleted from a database state. This is perhaps a reasonable
restriction for databases, but for knowledge-bases one
would want to add and remove more complex constraints
such as p! q, etc.

4.3 Abstract State Machines5

The Abstract State Machines (ASM) approach, in the
original form as proposed by Gurevich in 1988, was an
attempt to provide operational semantics to programs and
programming languages by improving on Turing's Thesis.6

The problem with Turing Machines is that they are low-
level, so that the description of algorithms other than toy
examples is almost infeasible. The Abstract State Machines
approach, however, makes it possible to specify algorithms
at any level of abstraction. Using successive refinement, it is
possible to investigate properties of the algorithm (like
correctness) at any of these levels. In this fashion, one can
give operational semantics to programming languages,
architectures, protocols, etc., and this has been done
extensively (see references in [23], [51] and the special
ASM issue of the JUCS [52]). Although not the primary goal,
the ASM approach is now often used as a specification
formalism.

4.3.1 Basic Syntax and Semantics

We will briefly describe the notion of an abstract state
machine, restricting ourselves to the bare essentials (in
various work on ASMs, various definitions are given and
many extensions of the basic framework exist). A signature
� is a finite collection of function names, each with an
associated arity. A (static) algebra A of signature � is a set
(called the superuniverse) together with interpretations of the
function names on this set. An abstract state machine
consists of a signature and a program, which is a set of
transition rules. These rules describe how transitions
between (static) algebras of signature � can occur. Basically,
a transition rule is an expression of the form f��t� :� t0,
where f is a function symbol, �t is a tuple of terms (in the

signature �) of length the arity of f , and t0 is another term.
Such a rule is fired in an algebra S by evaluating the terms �t

and t0 (to, say, the tuple �a and a in the superuniverse of S)
and by setting the value of f in �a to a, obtaining a new
algebra S0. A so-called sequence7 of such rules can be fired by
firing them all simultaneously, provided this can be done
consistently (this means there should not be two rules
which try to update the same function in the same
argument to two different valuesÐwe will give an example
later on). A run of an abstract state machine is a sequence
�S0;S1; . . .� (possibly finite) of static algebras of signature �

such that Si�1 is the result of firing the rules in Si. In
addition, an ASM may contain a static algebra of signature �

(the initial state) and a set of static algebras of signature �,
the final states. In that case, a run must begin with the initial
state, and none of the states, with the exception of the last (if
there is one) is allowed to be a final state. In a finite run, the
last state must be a final one. The simultaneous transitions
are somewhat similar to rewrite logic [53], which serves as a
semantics for the Maude specification language [54] and is
proposed, e.g., in [55], as an alternative semantics for
temporal logic based specification languages for object-
oriented systems, such as TROLL.

In a ASM specification, in principle, only the transitions
are defined. This specifies possible runs of the abstract state
machine, which, as stated above, consist of consecutive
algebras constrained by the transitions defined in the
specification.

4.3.2 Simple Extensions

Of course, this basic framework is very simple, making
proofs about (general) properties of abstract state machines
simple. However, in applications one would like to have a
richer language for describing algebras and transitions
between them, so for the ease of ªprogramming,º a number
of further elements are introduced. Each signature is
assumed to contain nullary function names true, false, and
names for the usual Boolean operations. Relations can be
introduced by identifying them with their characteristic
functions. Each signature must also contain the equality
sign. Unary relations can be used to define universes (sorts).
The nullary function name undef is used to be able to
introduce partial functions. Boolean terms can be built by
means of Boolean operations on relation terms. This allows
guarded transitions, of the form

if g then R;

where g is a Boolean term and R is a set of transition rules.
Universes can be expanded by taking elements of the
special universe Reserve, which occurs in every signature.

Example. The following expressions are two simple
transition rules, where the second one is guarded:

age�Bert� :� 0;

if age�Ernie� � 150 then age�Ernie� :� age�Ernie� � 1:

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 477

5. Abstract State Machines were formerly called Evolving Algebras.
6. A lot of information about Abstract State Machines can be found at

http://www.eecs.umich.edu/gasm and http://www.uni-paderborn.de/
cs/asm.html.

7. The word sequence is misleading here. Gurevich proposes block. Set
would also have been a more appropriate term.

Given a static algebra, the rules are fired as follows: The first
rule sets the age of Bert, which is a constant, to zero in the
new algebra. To fire the second rule, first the constant Ernie
is evaluated in the current algebra, then age�Ernie� is
evaluated (again in the current algebra). If the resulting
value is less than or equal to 150, age�Ernie� will be one
higher in the new algebra. A conflict might arise here. If
Bert and Ernie evaluate to the same element in the current
algebra, the rules are inconsistent, and the new algebra is
equal to the current one.

4.3.3 Further Extensions

The basic paradigm of Abstract State Machines has been
extended to handle nondeterminism through the Choice
construct which chooses an element from a universe
nondeterministically. Also, variables can be allowed in rules.
A rule with a variable (which may occur in the guard) is
executed by firing the rule for all possible instantiations of
the variable in parallel. One last extension we will mention
here are distributed ASMs, in which a finite number of
agents are allowed, each with their own module. Many other
extensions exist, too many to mention here.

Interaction with the external world is handled by
introducing external functions. These functions are not
defined or updated in the ASM, but whenever it needs
the value of an external function, it can ask the external
world. Typically, this is input provided by the user, or it
models interaction with other components of a system. An
external function can be ªimplementedº by another ASM.

External functions are also used as a mechanism for
abstraction: Any functionalism one does not wish to specify
can be hidden in an external function. This functionalism
can be expressed as constraints on the external function
(using general mathematical terms). When refining a
specification, such a function can be made internal and
can be manipulated within the ASM.

4.3.4 Proofs and Operationalization

The ASM approach does not come equipped with a (fixed)
proof calculus. Properties of abstract state machines can be
proved informally, using standard mathematical techni-
ques. Mathematical proofs can of course always be verified
(should one desire) by any proof checker for first-order
logic. This liberal view is certainly satisfactory when
viewing ASMs as improved Turing MachinesÐthe latter
do not have a standard logic with proof checkers either.
Using the ASM approach as a specification mechanism,
however, this position has some drawbacks. If automatic
verification of properties is desirable (and many users of
formal specification languages feel this is the case), then one
would like to have tools that can automatically translate a
specification into some (fixed) logical formalism and prove
properties of the specification, expressible in this same
formalism. Indeed, work is being done on formal proof
systems for ASMs, using various proof tools. For instance,
[56] use the Karlsruhe Interactive Verifier (KIV, a proof
assistant), while [57] use PVS and [58] uses SMV, which are
both model checkers.

Operationalization of ASMs is relatively straightfor-
ward. Basically, one just needs a mechanism that con-
tinually fires the applicable rules. An abstract machine for

ASMs is given in [59], and [60] gives a very simple
interpreter. An example of a concrete language for
ASM specifications which can be executed is DASL

([61]), which also includes polymorphic types and equa-
tional specifications. At the University of Paderborn, work
is done on a specification and design environment.8 At the
German National Research Center for Information Tech-
nology, a compiler for ASMs has been developed.9

Another interpreter is developed at the University of
Michigan.10

4.3.5 Running Example

Since there is no notion of subroutine or procedure in
ASMs, the entire example will be one long specification. (In
some interpreters, there are ways to use subroutines.) It is
possible to perform successive refinement using external
functions. This allows the hiding of functionality in
functions which are specified outside the ASM paradigm.
In order to show the structure of the full specification, we
will not use these functions.

In the specification of the signature of an ASM, there is
no structuring mechanism, so there is just one big signature.
We omit a complete formal description of the signature,
describing only the parts of the input and the design. Since
there are only functions in an algebra, we have to describe
predicates using Boolean functions. In ASMs, there are, in
principle, no sorts or universes; they have to be simulated
using unary predicates, which have to be described using a
function. In later documents on ASMs, universes are
mentioned, but without a formal syntax to describe them.
Therefore, we will make no distinction between universes
(which are subsets of the superuniverse), and their
characteristic functions. The part of the signature for the
input consists of a unary function Is value which should be
given Boolean values only: It denotes whether the argument
is of the right sort. Furthermore, it contains a binary
function Input, which should also only have Boolean
values. The signature contains an extra binary function
Design with Boolean values.

The structure of the specification is given in Fig. 10. We
use expressions like <Initialize> to denote a set of rules
which specifies the behavior of the ASM when it is
initializing. In the final specification, corresponding rules
should be inserted here.

In the specification of an ASM, there should also be a
way of identifying whether we are in the initial state. In
various documents on ASMs, this is handled differently.
One of the approaches is the following: There is a special
Boolean function constant Start which is true in the
starting state only. The rules that should only fire in the
initial state can use this constant. We have followed this
approach in our specification.

As is the case for Turing Machines, in the ASM approach,
there are no explicit programming constructs for loops and
subroutines. In the specification of control, one can only use
guards in the transition rules to make sure they fire only
when needed. We use constants to keep track of what we

478 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

8. http://www.uni-paderborn.de/cs/asm/ASMToolPage/
asm-workbench.html.

9. http://www.first.gmd.de/~ma/aslan.
10. ftp://ftp.eecs.umich.edu/groups/gasm/interp2.tar.gz.

are doing, and use these constants in the guards of

transition rules. The first constant is Mode to keep track of

where we are in the main loop of Propose & Revise. Its

possible values are initializing, mainloop, and

copying. A second control variable, Doing, is used for

control inside the main loop. Its possible values are

proposing, testing, check_if_revise_needed, and

revising. These control variables are to be used and

updated by the rules belonging to Initialize, Propose,

Test, Revise, and Copy. So, for instance, all rules for

<Propose> should be of the form:

if (Mode � mainloop & Doing � proposing & conditions

then updates

endif

One of these rules should set Doing to testing if the

proposing phase is finished. We will show what this looks

like for Evaluate.
Evaluate. The rules for Evaluate should only fire if the

control variables indicate that we are evaluating. They

should test whether the design is complete, and, if so, set

the Mode to copying.

if (Mode � mainloop & Doing � evaluating) then
if Design�p 1; undef� � true or . . . or

Design�p n; undef� � true then

Mode :� proposing

else

Mode :� copying

endif

endif

Test. The rule for Test presented in Fig. 11 illustrates

the variable mechanism. The variable viol is instantiated,

in parallel, to every element in the algebra for which

Is_violation holds and, for this value, the rule inside

the Var construct is fired.
We will not give the functional specification of Revise

since this can not be done within the ASM framework. It

is possible to define an external function for Revise.

Such a function can be described using any specification

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 479

Fig. 10. Structure of the ASM specification of Propose & Revise.

Fig. 11. ASM specification of the test inference action.

mechanism, including a logical description as used in the
requirements R1 through R4 in Section 3.

4.3.6 Discussion

Summarizing, a state in an abstract state machine is an
algebra, admitting very rich structures. Such a state can be
described by Boolean expressions built up from relations (or
actually their characteristic functions). A transition between
two states is induced by the firing of appropriate transition
rules of a very simple form. The control over a run of an
ASM is simple: As long as the current state is not a final
state, all applicable rules are fired simultaneously (a
guarded transition is only applicable if the guardÐthe
Boolean termÐevaluates to true). If a conflict between rules
(e.g., the updating of a function value to two distinct values)
arises, the algebra is not updated at all: The next algebra in
the run is the same as the current one (the ASM is in an
infinite ªloopº). Thus, the control is local, that is, we can
only specify the control over elementary transitions, not
over entire runs of the system. The rules give a constructive
way to calculate the next state (algebra). Although in this
fashion a declarative description of what to do when is given,
it is in general not trivial to explicitly describe control over
runs (similar to the case of Turing Machines). As the control
is implicit in the rules, the ASM approach does not seem to
be the first choice for the specification of control. This
should not come as a surprise, since initially, specification
was not the main goal of abstract state machines. Also, there
is no formal proof system for specifications of abstract state
machines. Proofs of correctness are informal (but, possibly,
rigid; see [62]). Although tools for running abstract state
machines exist which allow ªobservation and experimenta-
tionº for establishing correctness ([23]), a formal proof
system would allow automated proofs for use in verifica-
tion and validation.

Given the rich structure of an algebra, it is certainly
possible to describe knowledge (Boolean operators are
present in any algebra) and to define transition rules for
reasoning, but the control over reasoning remains implicit,
or has to be made explicit by the designer using control
parameters (as we have done in the running example). Also,
the main means for functional specification and abstraction
is provided by external functions. Such external functions
can only be specified outside the ASM framework (using an
(in)formal mathematical definition, a programming lan-
guage or a specification formalism like Z [63]). There are,
however, some other means for functional specification and
abstraction. It is common in ASMs, for example, to define a
concrete internal function which works over some abstract
set, and then in later revisions to replace the abstract set
with more concrete sets upon which functions in the ASM
can operate.

4.4 TROLL and OSL

The specification language TROLL is aimed at the specifica-
tion of object-oriented information systems. TROLL is based
on many-sorted first-order temporal logic, and its semantics
is defined by translating TROLL constructs to Object
Specification Logic [64]. There are various versions of the
language: TROLL [19], TROLLlight [65] and the version

described in Jungclaus' thesis [66], on which our discussion
is based.

4.4.1 Syntax of TROLL

TROLL provides a very rich syntax, aimed at a user-friendly
way of specifying object-oriented systems. In the current
section, we will first briefly describe some key ideas of
object-oriented specification. After that, we will describe the
syntax of TROLL. Due to space restrictions, only a few key
ideas of the TROLL syntax will be touched upon here.
Together with the pieces of example TROLL code given in
Section 4.4.4 below, these ideas should give a flavor of
TROLL specifications.

The general idea in object-oriented systems is to model
the universe of discourse as a collection of objects, each of
which encapsulates a local state and behavior, and can be
distinguished using some unique identifier that is immu-
table during its lifetime. The (description of) the global state
is thus distributed over these objects. The global behavior of
the modeled system as a whole emerges from the combined
local behavior of its constituent objects, governed by
interaction relationships. Some additional structuring con-
cepts in object-oriented systems are (taken from [66]):

Classification. For the purpose of abstraction, objects with
the same characteristics and behavior are grouped in
classes.

Specialization. A specialization is a more detailed view on
the same conceptual entity (represented by an object or a
class of objects). Specialization is a static notion, except
for roles:

Roles. During their lifetime, objects can play different roles,
which are temporary specializations.

Aggregation. Objects can be joined to form composite
objects called aggregations.

At a bird's-eye view, a state in TROLL is described by a
(structured) collection of values of the attributes (i.e., the
observable properties) of objects. Elementary state transi-
tions are caused by the occurrence of events, which can be
combined to form composed transitions, like in T R (see
Section 4.1). Before describing the high-level structuring
concepts from TROLL, we will first introduce the four basic
languages on which TROLL specifications are built. These
basic languages are:

Data language. This language describes the possible
attribute values in the universe of discourse. The data
language consists of terms in a sorted first-order
language. There are special terms for events, called
event terms (an example will be given below).

State formulae language. Object states are described by
first-order formulae over the terms of the data language.
There is a special predicate occurs�e�t1; . . . ; tn��, defined
on event terms e�t1; . . . ; tn� intended to mean that the
event e is about to occur.

Temporal language. The temporal basic language, which
consists of a past tense part and a future tense part,
expresses temporal relationships between state formu-
lae. For example (if m is of sort money_type), then
the expression (occurs�withdraw�m�� and balance � m)

480 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

implies (next balance � 0) states that if in the current
state a withdrawal event occurs (withdrawing an
amount m), and the balance equals m, then in the next
state the balance is zero.

Pattern language. The pattern language is used for
ordering event terms of a set, in a way resembling
process algebra formalisms like CCS [67] and ACP
[17]. There are three operators: sequential composition
(->), choice (select . . . end select and case . . . esac) and
recursion.

We are now ready to introduce the basic structuring
mechanism of TROLL: templates. A template is a generic
description of an object, providing a local signature
declaration, which declares the attributes and event
symbols, and a local specification, which specifies the
admissible behavior and attribute values for instances of the
template. The syntax for the local specification is very rich:
Using the basic languages, it is possible to specify the effects
of event occurrences, static or dynamic constraints on the
values of attributes, commitments and obligations to per-
form certain events, and patterns describing an instance's
behavior in a constructive way. All this is illustrated by our
running example below.

A template is not the same as a class. A class is regarded
as a collection of objects described by the same template. In
the TROLL syntax, a class definition specifies this collection,
or, in other words, it describes the potential extensions of
the class. The difference between a class and a template is
that a class adds to a template a system for identifying
instances of that template.

A TROLL specification consists of a number of class
definitions and specializations, role definitions, relation-
ships, and interfaces based on the class definitions. These
additional concepts are not discussed here. However, we
will end this discussion of the syntax of TROLL with a few
remarks needed to read the examples.

Event effects. In the local specification part of a template,
there are several ways to specify the effect of an event
occurrence. Here, we discuss two ways, using the
following TROLL code:

effects
�event id� attr � value;

constraints

occurs�event id� implies next attr � value;

An expression like the one in the first two lines can be used
to relate the occurrence of an event to the value of an
attribute. The expression given should be read as: if the
event event_id occurs in the current state, then in the next

state the value of attr equals value. The same effect can

be reached using a dynamic constraint, illustrated in the last

two lines. In general, the keyword constraints is followed

by a temporal formula.

Object interaction. So far, only local behavior has been

discussed. Relations between event occurrences in

different objects can be specified using interactions as

follows:

interactions

object1:event id1� object2:event id2;

The expression object1:event id1� object2:event id2

denotes event calling, and means that whenever

event id1 in object1 occurs, the event id2 in object2

occurs.

4.4.2 Semantics of TROLL

The semantics of TROLL is based on Object Specification

Logic (OSL, see [64]), which is a temporal logic for

reasoning about objects. In Fig. 12, the relation between

TROLL, OSL, and their semantics is depicted. On the left

hand side, the TROLL syntax and its sublanguages are

shown. The formal semantics of TROLL is given in [66] as

a translation to OSL formulae. This corresponds to the

arrow from TROLL to OSL in Fig. 12. This arrow departs

from TROLL's temporal language, as that language is

closest to OSL, and many parts of TROLL are actually first

translated to the temporal sublanguage, which in turn is

trivially11 translated to OSL.
OSL itself is interpreted over sequences of states, as

explained in the rest of this section. Thus, these sequences

of states serve as the semantics of OSL. Indirectly, they are

also the semantics of TROLL.
Object Specification Logic. OSL consists of two levels: a

local and a global level. The local level is concerned with the

definition of the local state and behavior of an object (the

description of which is called an aspect of an object),

specified by aspect templates in a local specification

language. At the global level, the different aspects are

related, forming specializations and aggregations. In this

section, we will adopt the notation and terminology used in

[66], which differs from the notation in [64]. First, we

present the local specification language, used for specifying

object aspects. After that, the semantics of the local level is

given. We then proceed to discuss morphisms, which

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 481

Fig. 12. The semantics of TROLL.

11. Not completely trivial, as OSL only contains future tense temporal
operators. The past tense part of TROLL is translated to future tense
OSL formulae relative to the beginning of time.

connect the local and the global level. Finally, we discuss
the global level and its semantics.

Local Syntax of OSL. At the local level, states and
transitions are described using many-sorted first-order local
temporal predicate languages. These languages are defined
using (local) signatures � � �IS; �; ATT;EV T �. A local
signature consists of a partially ordered set12 IS of
indentifier sorts, a distinguished sort � 2 IS (the local
sort), which is used for indentifying instances of the local
specification, a set of attribute symbols ATT and a set of
event symbols EV T . Based on a signature �, a set of
predicates P��� is defined, consisting of predicates
.e�x1; . . . ; xn� and �e�x1; . . . ; xn� for every event symbol e
and .a�x1; . . . ; xn� for every attribute symbol a. The
intended meaning of the predicates .e�x1; . . . ; xn� and
.a�x1; . . . ; xn� is that event e is enabled (i.e., it can occur (it
does not have to occur) in the current state), respectively,
that a certain value for attribute a is observable. The
predicate �e�x1; . . . ; xn� indicates that event e occurs in the
current state. From these predicates, a local specification
language is defined, with the usual logical connectives as
well as three temporal operators:
 (ªnextº), ut (ªalwaysº),
and � (ªsometimeº). In this local language, predicates are
localized by prefixing them with a variable with as sort the
sort �. A local specification is a set of formulae (the local
axioms) in this language. State transitions are described by
axioms that define admissible behavior by relating current
and future states.

Local Semantics of OSL. Also, semantically local and
global states are distinguished. Here, we first introduce the
local interpretation of formulae. We assume the existence of
a fixed data universe (an algebra of data types), providing
for each sort s a carrier set A�s�. Formulae in the local
specification language are interpreted over local interpreta-
tion structures that consist of a family of carrier sets for the
sorts used and a sequence of states ��k�k2IN (discrete linear
time). States are sets of predicates that describe which
observations are possible, which events are enabled and
which events actually occur in that state. Formally, states
are elements of the set of all possible local states

� � fp�x1; . . . ; xn� j p 2 P���; xi 2 A�si� for i � 1; . . . ; ng:
A sequence of states has additional semantic constraints,
among which is the following frame assumption: Only the
occurrence of an event can change the set of observables
and enabled events (i.e., only an event occurrence can
change a state). Another constraint is that attributes are
functional in OSL: if .a�x� 2 � and .a�x0� 2 � for some state
� and for some a 2 ATT , then x � x0. As a consequence,
attributes are interpreted functionally, as usual.

Template Morphism Syntax: Bridge between Local
and Global Level. As stated before, objects can be
composed to form complex objects. In OSL, this is
specified using template morphisms to compose complex
signatures from which the complex objects are generated.
A template morphism � : �! �0 between two signatures

� � �IS; �; ATT;EV T � and �0 � �IS0; �0; ATT 0; EV T 0�, is
a tuple ��IS; !�; �ATT ; �EV T �, with �IS a mapping of
identifier sorts, �ATT and �EV T mappings for the attribute
and event symbols, respectively, and !� : �0 ! �IS��� an
operator used to distinguish kinds of morphisms. There
are two kinds of morphisms: inclusion of � in �0 and
injection of � in �0. With the former, additional signature
elements can be added to �, making inclusion morphisms
suitable for modeling specialization. With the latter, �
can be incorporated in a more complex signature, making
it suitable to model aggregations of objects in composed
objects. Using template morphisms, different local signa-
tures can be combined. The resulting signatures are used
to compose formulae in the global language.

Global Language and Semantics of OSL. The global
language is based on a signature that consists of all local
signatures, generated by inclusion and injection template
morphisms. The language defined over this signature
consists of formulae of the form �') �, where ' and
are local-language interaction formulae over different
signatures. Using this language, relations between (the
behavior of) objects is described. In a formula ') , the
occurrence of events described in ' implies the simulta-
neous occurrence of the events described in (ªevent
callingº). Formulae in the global language are interpreted
over composed interpretation structures that are generated
from the local interpretation structures.

Intuition Behind OSL. Consider a global language
formula ') . Both ' and are formulae of the global
signature, containing subformulae that refer to different
objects in the system. At the global level, with formulae like
') , it is only possible to formulate expressions like ªif
something happens in the life of an object referred to in ',
then something else has to happen in the life of an object
referred to in at the same moment.º For such an
expression to have any meaning, it is necessary to specify
what the lives of both objects look like. This is what is done
by the full temporal logic subformulae of ' and .

4.4.3 Proof Calculi and Operationalization of TROLL

and OSL

In [64], a sound axiom system for OSL is given. (Complete-
ness has not been proven yet.) Experiments using an
automated theorem prover for reasoning about specifica-
tions have been performed. By translating TROLL specifica-
tions to OSL, it is, in principle, possible to reason about
TROLL specifications as well.

Execution of TROLL specifications is, in general, not
possible. Execution of a TROLL specification would amount
to finding a model that satisfies the specification, but,
because TROLL is an extension of full first-order logic, no
algorithm exists that finds such a model for an arbitrary
TROLL specification. To provide operationalization, a
restricted version of TROLL with an operational semantics
has been defined. This version of the language restricts the
arbitrary first-order temporal constraints available in
TROLL. To enable formal proof techniques, a more
restricted version, called TROLLlight [65], has been devel-
oped. This language is much less declarative: It lacks the
temporal language and instead uses an operational form-
alism resembling the pattern language of TROLL.

482 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

12. Actually, IS is the Cartesian category freely generated from the
partial order. We will present OSL here without reference to the category
structure of the sorts. In [66], OSL is also presented without reference to the
category structure of the sorts.

4.4.4 Running Example

To specify the running example Propose & Revise in TROLL,
the problem has to be modeled as an object-oriented system
first. This can be done in (at least) two ways, depending on
which parts of Propose & Revise are modeled as the most
important objects:

Inference actions as active objects. With this approach, the
inference actions are modeled by separate objects that
cooperate with objects or data structures that model the
stores. When using this approach for modeling Propose &
Revise, the main (active) objects would be a Proposer and
a Reviser. Both would operate on a (passive) design
object.

Stores as active objects. With this approach, stores are
modeled by objects that have methods corresponding
to the inference actions that use them as input or
output stores. The inference actions themselves are
thus modeled (only) as methods. When using this
approach for modeling Propose & Revise, the main
objects are a design object, which is able to e.g., revise
and evaluate itself, and an active object containing
violated constraints.

In this paper, the second approach is taken because this
results in a clearer specification: there are less objects,
parameter passing is minimal, and the specification has a
more object-oriented spirit (data and operations are grouped
together). The main objects are: an (active) design object,
which is able to initialize, propose, revise, and evaluate itself,
and a violations object. These objects work together as
components of a third object: Parametric_design_task,
which handles I/O and controls the overall behavior.

In the rest of this section, first, three basic classes are
specified. After that, a first-level decomposition of Propose &
Revise is given, corresponding to its functional specification.
This decomposition is refined into a second-level decom-
position, in order to specify the control flow, as indicated in
Fig. 4 in Section 3.

The Basic Classes. We begin by defining, in Fig. 13, a
class for parameter objects.13 Parameters have two attri-
butes: a name (which serves as the key identifying
parameter obejcts in a collection, indicated by �key�), and
a value. There is one event (i.e., an operation on a

parameter): set_value, which sets the value attribute to
a certain value.

Objects belonging to class Parameter_class are aggre-
gated in a composed object of class Design_model_class,
which is defined in Fig. 14. The scope of bound logic variables
is indicated as follows in TROLL: in (exists V : sort id) ('),
variable V is bound in the formula ' delimited by the
parentheses.

Instances of the class Design_model_class are com-
posed objects, having a set of instances of class Para-

meter_class (i.e., parameter objects) as their components.
This is specified by the construct

components name : SET�class name�; :
In TROLL, this construct implicitly defines an attribute
name COMP IDs, taking values of sort set�j class name j�.
(Note: j class name j denotes the identifier sort asso-
ciated with class class name. It is used for referencing
instances of the class.) In the first-level decomposition
below, two instance of Design_model_class will be
used, serving as input store and output store, respec-
tively. Moreover, in the second-level decomposition, a
subclass of Design_model_class is defined. This
subclass imposes more constraints and events on a set
of parameters, thus modeling a design object as a special
kind of a set of parameters, having more specialized
behavior. We will now define the class of constraint
objects in Fig. 15.

Instances of the class Constraint_class are simple
(i.e., noncomposed) objects having two attributes: a con-
straint name and a set of tuples consisting of n values each.
As an example constraint, consider

�not all fours or eights; f�4; 4; . . . ; 4�;
�8; 8; . . . ; 8�g�

stating that there is a constraint, called

not all fours or eights;

forbidding that either p1 � 4 and p2 � 4, etc., or that p1 � 8
and p2 � 8, etc.

First-level Decomposition. The first-level decomposition
of the running example is presented in Fig. 16. In the
specification of the running example in Fig. 16, the parametric
design task is modeled as a composed object consisting of
objects belonging to the class Design_model_class (input

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 483

13. The class definitions in this paper are not complete: for example, birth
and death events are deliberately omitted.

Fig. 13. TROLL specification of the class Parameter_class.

Fig. 14. TROLL specification of the class Design_model_class.

and output) and a set of constraints. Note that in TROLL

definitions, free variables are implicitly universally quanti-

fied. (In our examples, variables are always denoted by single

capital letters.)
Second-level Decomposition. In the first-level decom-

position given above, the parametric design task was

completely specified in terms of input and output. There

was no design object representing the store ªdesign.º In the

refinement of that specification, however, this will not be

the case. The init, evaluate, propose, and evaluate inference

actions are modeled as events that can occur in the life of a

design object. In the second-level decomposition, there is

also a store ªViolationsº (see Fig. 4), which is modeled as a

separate class in TROLL, given in Fig. 17. The only attribute

of ªViolationsº is a set of constraint identifiers.
The Design object is an instance of the class

Design_class, presented in Fig. 18, which is a special

kind of a design model (set of parameters), namely, a

design model subject to the constraints imposed on the

design task. To represent this relationship between

Design_class and Design_model_class, the former

is specified as a subclass of the latter as indicated in

Fig. 18.

We are now ready to refine the specification given in
Fig. 16, using the Violations class and Design class

classes as extra components of the object. (Note that the
components Input, Output, and Constraints are as in
the specification in Fig. 16.) In the refined specification,
which is given in Fig. 19, ÿ> is the sequential composition
of processes. All-capital identifiers are process identifiers in
the pattern language.

4.4.5 Concluding Remarks

In principle, the TROLL idea of having a user-oriented, rich
syntax on top of the terse syntax of OSL is nice. The
structuring concepts introduced by this extra layer greatly
extend the modeling power of OSL, which is shown by the
examples given in [66]. However, it appeared to be very
difficult to specify the running example in TROLL. The
resulting specification suffers from very complex and long
logic formulae. We think that, to a great extent, this is due to
the following problems: In the first place, the language has a
quite verbose syntax. In the second place, it is not easy to
quantify over collections of objects. Such quantification has
to be coded by the user, using (implicitly defined) attributes
like Input ID:Parameters COMP IDs. In the third place, there
are often many ways to specify requirements, which makes

484 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 15. TROLL specification of the class Constraint class.

Fig. 16. First-level decomposition of Propose & Revise in TROLL.

it difficult to choose the best way. Another weakness is that

there is no way to express the relation between a functional

specification and its implementation: It is not possible to

express this refinement relationship within the language.
As discussed above, TROLL provides two ways to specify

control: by constraints that define admissible behavior

using a temporal language and by constructive pattern

language expressions. On the one hand, both mechanisms

are useful in the specification of knowledge-based systems,

which we consider as an important feature of a specification

formalism. On the other hand, the pattern language is not

very expressive. Because the pattern languages only has

sequential composition, choice and recursion, specifying

iteration results in abusing process variables as a kind of

line numbers and targets for goto. Although composition,

choice, and recursion are powerful enough to express

constructs like a while-loop, the syntax of TROLL does not

actually provide explicit looping constructs.
A final remark concerns proof obligations in the

formalization of the running example. As claimed before,

the specification in Fig. 19 implements the one in Fig. 16. By

claiming this, we are given the obligation to prove that the

properties for propose and revise as given in the first-level

decomposition hold for the behavior specified in the

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 485

Fig. 17. TROLL specification of the class Violations class.

Fig. 18. TROLL specification of the class Design class.

second-level decomposition. However, TROLL has no
facilities to express this proof obligation. (There is even no
way to state the relationship between the specifications in
Fig. 16 and Fig. 19.) A newer version of the language [68],
which allows manipulation of formulae on a metalevel,
claims to have addressed this problem.

4.5 Language for Conceptual Modeling

Wieringa's language LCM (Language for Conceptual
Modeling) was designed as a tool for the conceptual
analysis of object-oriented databases. The aim is to develop
a theory of dynamic objects, and to provide a logic for
specifying such objects and for reasoning about them. To
this aim, equational logic is used for the specification of
static algebras and for a dynamic algebra of events. A (basic
version) of dynamic logic is used for the specification of the
interaction of the two. We refer to Section 4.4 for a brief
introduction about object-oriented concepts. Our exposition
is based on the papers [69] and [18].

4.5.1 Syntax

The basic language of LCM is order-sorted equational logic.
The formulae of this language are then used as the atomic
formulae of a dynamic logic.

A specification in LCM has three parts, here to be
called the value block, the object class and relationship block,
and the service block. The first part contains common
datatypes and some built-in operators on them (like the
natural numbers with addition). In addition to this, the
user may specify Abstract Data Types (ADT's) using the
order-sorted equational language. The second part con-

tains definitions of object classes, and of composite object
classes (called relationships). The third part is supposed to
contain at least one sort EVENTS referring to actions that
can be performed on states. Wieringa does not fix a
particular set of operations for this signature, but one
should have some kind of process algebra in mind, like
ACP ([17]) or CCS ([67]). There is one minimum condition
on the signature, namely, that the sort EVENTS has a
binary communication operator.

Of the object class and relationship block, we only discuss
the object class part. It is assumed that, for each object class
to be defined, the value block must define an identifier sort
of the same nameÐthis identifier sort provides all object
identifiers of the objects of that class. The most important
part of this block is the declaration, for each class, of
attributes, predicates and events. Attributes and predicates
refer to the aspects of objects that are subject to modifica-
tion; typical examples are age or address. The events are
functions with codomain EVENTS, and may have several
argument sorts; the event applicable to the instances of a
class are declared in its events section.

A specification in LCM consists of the three blocks
described above, together with a number of axioms. For
the common datatypes in the value block (natural numbers,
sets, strings, etc.), one has some standard specifications in
mind, and the same applies to the third block (the
events)Ðwe already mentioned the examples ACP and
CCS. Concerning the object specifications, each object class
contains a list of transaction decompositions; here, the
communication operator of the sort EVENTS can be used

486 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 19. Second-level decomposition of Propose & Revise in TROLL.

to indicate which local events (pertaining to one object only)
may be composed to one global event.

Finally, to specify the system's behavior, one may use
axioms written in a basic version of dynamic logic. The
attributes of the class objects can be subject to static integrity
constraints to be expressed in the form of (conditional)
statements, such as equations or inequalities (the machinery
of dynamic logic is not yet used here). A typical example is
ªage�p� � 150.º Second, effect axioms are of the form
�! �e� , where � and are finite conjunctions of
equations, and e is a term of sort EVENTS. A typical
example here is the formula

�children�p� � cc� ! �addchild�p; c���children�p�
� cc [fcg�:

The third and last type of axiom is that of a precondition
axiom. Such an axiom must be of the form heitrue! ,
where � and are as in the previous case. The meaning
of this axiom is that if we are in a state where there is a
possible execution of e that terminates, then currently,
is true.

4.5.2 Semantics

The semantics of a specification consists of three parts
(following the three parts of a specification). First of all, the
meaning of the value block is given by an algebra, which
should be an initial model of the value block specification (in
an initial model, all the elements of the domain are denoted
by some term, and two elements are the same exactly when
their corresponding terms are provably equal). Based on
this initial model, possible worlds are formed. These
possible worlds have the initial model as their domain,
and differ only in the interpretation of the attributes and
predicates. The worlds should be models of the object class
block specification.

Besides this static part, a model for the specification also
contains an algebra E for the event part of the specification.
The only constraint on this algebra is that it is a model for the
event specification; thus, for instance, it should contain a
universe of events interpreting the terms of sort EVENTS.
Finally, a model contains a function � that relates the static
and the event part by mapping terms of the sort EVENTS
to binary relations (or functions) on the set of possible
worldsÐif �w;w0� 2 ��e�, then the intuitive meaning is that
the event e causes a transition from world w to world w0. The
map � should satisfy some natural conditions concerning the
E-algebra; for instance, terms that denote identical elements
in the E-algebra should denote identical relations as well.

It is hard to describe the nature of the transitions in the

semantics in general, since the event signature is not fixed

beforehand, and the effect of events on a state has to be

described by explicit axioms. This flexibility also has the

effect that the power to construct new events from old ones

is determined by the expressiveness of the event signature.

The flexibility may (and should) of course be limited for

reasons of efficiency and/or mathematical transparency.
Intended models for some special kind of specifications are

described in which the effect of each event pertains to one

object only, and, thus, has a minimal effect on the state as a

whole. This kind of restricted semantics can also be

described by explicitly listing some frame axioms.

4.5.3 Proof Calculus and Control

Wieringa defines a proof calculus for which he claims
soundness and completeness with respect to the semantics
described above. However, in order to handle the intended
models in which the effects of the events is minimal, one
needs to write down frame axioms explicitly.

Basically, Wieringa's approach to control is pair-based
and not constructive; that is to say, the effect and
precondition axioms only refer to what is going on now
and after the execution of one event. They provide no more
than a limited picture of the state as it is after the execution
of one EVENT -term. One needs explicit frame axioms to
gain sufficient control of the new state.

On the other hand, by ingeniously combining the

precondition axioms with the static constraints, more is

possible then it seems at first sight. Also, since the signature

of the dynamic algebra is not fixed beforehand, the

formalism offers a lot of flexibility, perhaps allowing some

opportunities to specify global constraints in a very rich

dynamic language.

4.5.4 Running Example

To specify the running example in LCM, which is
developed for modeling object-oriented databases, first
the running example had to be modeled as an object-
oriented system, as was the case with TROLL. Again, it
was chosen to model the stores as active objects. The
reader is referred to Section 4.4.4 for a discussion of this
choice. Our example in LCM is organized as follows: We
first define the basic datatypes needed to represent
parameter-values, and parameter-violations (the value
types BOOL, V ALUEi, and V IOLATION). We then
introduce an object class PARAM SPACE to represent a
set of parameters. This class is partitioned in two
subclasses, a subclass INPUT OUTPUT to represent
the input and output design and a more complex
subclass CURRENT DESIGN to represent the current
design.

All this leads to two alternative ways of specifying the
Propose & Revise method: one as a specification in which
only the pre and postconditions on input and output are
specified, and one which ªopens this upº and specifies the
substeps of this method as the life-cycle of the current-
design object.

The basic datatypes that are needed to model the
running example can be modeled in a straightforward
way. First of all, we need a datatype for Boolean values, and
a datatype for the value types of each parameter. Each such
value type must include at least the special value undef :

begin value type BOOL

functions

true; false : BOOL

end value type

begin value type VALUEi
functions

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 487

undefi : V ALUEi
end value type

Next, we declare the V IOLATION-type, together with

two elementary functions on sets of violations. The third

function constr viol determines for a tuple of values (i.e., a

full design) which set of constraints has been violated

(possibly the empty set if no constraints are violated).

begin value type V IOLATION

functions

; : set of V IOLATION

elem of : V IOLATION �
set of V IOLATION ! BOOL

constr viol : V ALUE1 � . . .� V ALUEn !
set of V IOLATION

end value type

We now introduce, in Fig. 20, the basic notion of a

parameter-space, which is a collection of parameter values.

This class has an event which enables us to initialize all

parameter values as undefined. We partition this class in

two subclasses, one to represent the input and output

designs, and one to represent the current design, on which

we will define the design process.

We are now in a position to give, in Fig. 21, the

specification of the Propose & Revise method solely in terms

of the input-output conditions. The object-class given in

Fig. 21 does nothing more than specifying the overall

properties that we want to enforce on the problem solving

method, and correspond directly to Requirements PR1,

PR2, and PR3.
An alternative way of specifying Propose & Revise is to

describe the steps that together make up the computation of

this method. This specification is done by specifying the

life-cycle of the class CURRENT DESIGN , of which the

object current is the only instance. The specification is

presented in Fig. 22.
The attributes p1; . . . ; pn represent the values for the n

different parameters. The predicate violating determines if a

design violates any constraints. All the inference actions are

specified as events that can happen to a design, and these

events are characterized by postconditions axioms. The

overall control flow over these events is specified in the life-

cycle of the design object-class. It is unclear to us whether

(and, if so, how) the relation between the specification of the

class P&R and the detailed specification in the class

CURRENT DESIGN can be specified in LCM.

488 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Fig. 20. LCM specification of object class PARAM SPACE.

Fig. 21. LCM specification of Propose & Revise.

4.5.5 Discussion

It is important to notice that in all of the above we did not
use any of the features of LCM which were used to motivate
the language. We are only using the process algebra in a
trivial way to string operations together in sequences and
loops, and we are not using it to model operations as a
decomposition of communicating processes. We are also
using only very few of the object-oriented features of the
languages. All the real work happens in one class, with one
big object which brings all the elements of the specification
together. From this, we may conclude that our example is
not aimed very well at displaying these distinguishing
features of LCM.

The nice thing about Wieringa's approach is its (con-
ceptual) neatness; in particular, the syntactic separation of
the static and the dynamic part seems quite elegant. The fact
that the dynamic signature is not fixed beforehand makes
the framework very flexible. The price that one has to pay
for this is the frame axioms that are needed to fully describe

the effect of events. Finally, the communication algebra that

Wieringa uses in the paper we studied provides a neat way

of localizing the dynamics of an object to that object.

5 COMPARISON AND CONCLUSIONS

In this section, we briefly compare the different formalisms

using our two dimensions of analysis and then discuss a

number of implications for the specification of (in parti-

cular, control of) knowledge-based systems.

5.1 A Short Comparison

We will give a brief overview of the frameworks in terms of

the concepts and aspects of specification mentioned in

Section 2.

5.1.1 States

With the exception of PDDL, where a state is a proposi-

tional valuation, a state is either an algebra (ASM and LCM)

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 489

Fig. 22. Alternative LCM specification of Propose & Revise.

or a first-order structure (DDL, T R, and TROLL/OSL).
Syntactically, algebras are described in equational logic,
while first-order structures are described in first-order
predicate logic. In TROLL and LCM, the language is sorted,
in the other frameworks it is unsorted. In PDDL, a state is
described in propositional logic. DDL and PDDL have an
operational semantics in which a state is a set of first-order
structures (DDL) or a set of propositional valuations
(PDDL). One last point is whether the interpretation of
function symbols is fixed over all states, or whether it may
vary. In ASM and LCM (in which there are only functions),
functions are of course allowed to vary over states. In LCM,
only the attribute functions and Boolean functions (which
play the role of predicates) are allowed to vary; functions
specified in the data value block (addition on the integers,
for instance) must be the same in all states. In DDL, there
are no function symbols, only constants, which should be
the same in all states. In both TROLL and T R functions are
not allowed to vary (although varying functions can be
simulated by varying functional relations). Table 2 sum-
marizes syntax and semantics of the specification of states.

5.1.2 Elementary Transitions

With respect to the specification of elementary transitions,
two approaches can be distinguished: user-defined and pre-
defined, fixed elementary transitions. In TROLL and LCM,
the user defines a set of elementary transitions (i.e., specifies
their names) and describes their effects using effect and
precondition axioms. For instance, in TROLL, the user
defines for each object class a set of events, which are the
elementary transitions from one point in time of a TROLL

model to the next. Associated with each event e is a
predicate occurs�e�, which is true in a time point t iff event
e occurs in time point t, leading to a new state at time point
t� 1. Using this predicate, the user describes the intended
behavior of e. In LCM, the user also defines a set of events
for each object class. For each event e, the user can define
effect axioms of the form �! �e� and precondition axioms
of the form heitrue! . The events denote binary relations
over states. On the other hand, in (P)DDL and ASM, there is
only a predefined, fixed set of elementary transitions, which
resemble the assignment statement in programming lan-
guages. In (P)DDL, there are two parameterized predefined
elementary transitions, and there is no possibility for the

user to define additional ones. These predefined transitions
are IHp (set p to true) and DHp (set p to false), which update
the database state according to a logic program H after
setting p to true or false, respectively, and their variants Ip
and Dp, which just insert p into or delete p from a database
state. Semantically, Ip and Dp are relations that link pairs of
states �m;n�, where m � n for all predicates but p. In ASM,
there is only one type of elementary transition, namely,
function updates expressed as f�t� :� s, which links two
algebras A and A0 that only differ in the values for f�t�. Like
DDL, there are parallel updates and choice. The T R
approach is in-between these two approaches: as in TROLL

and LCM, the user defines a set of elementary transitions,
but unlike in TROLL and LCM, it is possible to construc-
tively define their effect in a transition oracle. Semantically,
in T R, an elementary transition is a relation between
database states, where the transition oracle defines which
pairs of database states are related. In T R, it is also possible
to describe the effect of an elementary transition without
explicitly defining that transition in the transition oracle.
Table 3 summarizes syntax and semantics of the specifica-
tion of elementary transitions.

5.1.3 Composed Transitions

In ASM, there are several possibilities to specify composed
transitions, such as adding guards to transition rules,
specifying bulk transitions that fire a number of transitions
at the same time, and specifying choice. However, there is
no possibility to explicitly specify sequential composition or
iteration. For the other frameworks, two approaches can be
distinguished. In TROLL and T R, elementary transitions
can be composed using sequencing, iteration, and choice,
using the syntax of the pattern language in TROLL, and

and ! in T R. In both frameworks, the composed
transitions thus formed are interpreted over sequences of
states. In LCM, elementary transitions can be composed
using a syntax derived from process algebra, which also
amounts to having sequencing, iteration, and choice for
composition. In (P)DDL, this can be done using sequencing,
iteration, bulk updates. and choice. However, unlike in
TROLL and T R, a composed transition is not interpreted
over a sequence of states, but as a relation between pairs of
states: the state at the beginning of the composed transition
and the final state of the composed transition, as in

490 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

TABLE 2
Overview of State Description Syntax and Semantics

Dynamic Logic. The transition relation associated with a

composed transition is of the same kind as the transition

relation associated with an elementary transition in LCM

and (P)DDL, and no intermediate states are accessible in the

semantics, so, it is impossible to express constraints on

intermediate states.
There is another important difference between TROLL

and T R on the one hand, and LCM and (P)DDL on the

other hand. In (P)DDL and LCM, specifying control in

composed transitions in a constructive way (ªprogram-

mingº with sequencing, choice, and iteration) is the only

possibility. However, in TROLL and T R, control can also be

specified by constraining the set of possible runs of a

system, e.g., in TROLL, control over runs of the system can

also be specified by expressing constraints using temporal

logic. Table 4 summarizes syntax and semantics of the

specification of composed transitions.

5.1.4 Proof Systems and Operationalization

The five approaches use various proof systems. Both

PDDL and DDL are equipped with a Hilbert-style proof

system. In both cases, the proof system is sound and

complete for a subclass of all structures that form the

semantic domain of PDDL. For T R, there is a Gentzen-

style proof system for the Horn version of T R. A more

general proof system is announced in [46]. The

ASM approach deliberately does not provide any specific

proof system. Instead, the ASM approach is kept as

simple as possible to allow the use of standard mathe-

matical techniques for proving properties of specifications.

Several authors have experimented with using various

proof tools for ASMs. For TROLL, there is no direct proof

system. However, as the semantics of TROLL is defined in

terms of OSL, for which a proof system exist, it is possible

to prove properties of a TROLL specification via a

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 491

TABLE 4
Overview of Syntax and Semantics of Composed Transitions

TABLE 3
Overview of Syntax and Semantics of Elementary Transitions

translation to OSL. LCM uses a proof system based on
equational reasoning.

Most approaches support operationalization. For PDDL,
an operational semantics in terms of state transitions is
provided. This operational semantics is proven to be
equivalent with the declarative semantics. For T R, the
operational semantics is restricted to the so-called serial
Horn version of T R. This semantics is based on a
restricted form of deduction which restricts some freedom
in proofs. Operationalization of ASM specifications is
straightforward, and indeed a number of ASM inter-
preters have been created. For TROLL, there is an
operational semantics for a version of the language in
which some restrictions are imposed on first-order
temporal formulae. A more restricted operational version,
TROLLlight, has been created to support automatic proof
techniques. Table 5 summarizes proof systems and
operationalization of the five approaches.

5.2 Conclusions

In this second part of the concluding section, we will make a
number of observations that are relevant for future users of
the specification languages discussed above, and for future
designers of KBS specification languages, in particular, as
far as the choice of specification language features for
control is concerned.

5.2.1 Constructive or Constraining Specifications

In all of the languages discussed in this paper, the
constructive style of specification is supported. Examples
of this are the program expressions in DDL, or the
communicating algebra expressions in LCM. In contrast
with the widely supported constructive style of specifica-
tion, only TROLL and T R support the constraining style of
specification. (ASM allows constraints on domains and on
external functions to be expressed in general mathematical
terms instead of in the ASM language itself.) We think that
for the specification of control of the reasoning process of a
KBS, both styles are valuable. It would be especially useful
to be able to combine both styles in one specification, as is
possible in T R and TROLL.

5.2.2 Global or Local Control

The languages differ in the extent to which control must be
specified globally, for an entire system, or locally, separately

for individual modules of a system. In particular, DDL and
T R only allow a single, global control specification, while
TROLL and LCM allow the specification of control that is
local for individual modules. Because the arguments in favor
of either approach resemble very much the arguments in
favor or against object-oriented programming, we will not
go into any detail here, but refer to that discussion, with the
proviso that we are concerned here with notions of
modularity and encapsulation, and not so much with
inheritance and message passing. Besides such general
software engineering arguments in favor of object-oriented
techniques, knowledge modeling has particular use for such
techniques: Frames have a long tradition in knowledge
representation and are a precursor of object-oriented
techniques. Dealing with mutually inconsistent subsets of
knowledge is a particular example of the use of localized
specifications.

5.2.3 Control Vocabulary

With ªcontrol vocabulary,º we mean the possibilities (in a
technical sense) that the language gives us to construct
composed transitions from more primitive ones. Here, the
news seems to be that there is relatively little news: there is
a standard repertoire of dynamic type constructors that
every language designer has been choosing from. This
repertoire usually contains sequential compositions and
often one or more from the following: iteration, choice, or
parallelism (with or without communication).

Two languages take a rather different approach how-
ever, namely, LCM and ASM. The designers of LCM
suggest the use of some form of process algebra for their
dynamic signature, but make no strong commitment to any
particular choice, and LCM should perhaps be viewed as
parameterized over this choice. In the case of ASM, it seems
that there is no possibility at all to include any control
vocabulary in the language: ASM provides only its
elementary transitions (the algebra updates). It provides
neither a fixed vocabulary for building composed transi-
tions, nor does it seem parameterized over any choice for
such a vocabulary. In practice, auxiliary mechanisms such
as macros (textual substitutions) are used to augment the
control vocabulary.

A final point concerns the treatment of nonterminating
processes. Such nonterminating processes might occur in
the specification of knowledge-based systems for process

492 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

TABLE 5
Overview of Proof Systems and Operationalization

control and monitoring. TROLL, LCM, and ASM can all deal
with such nonterminating processes. Although it is of
course possible to specify nonterminating processes in
(P)DDL and T R, it is not possible to derive any useful
properties of such programs because in (P)DDL and T R,
nonterminating processes have trivial (empty) semantics.

5.2.4 Refinement

It is commonly accepted in software engineering that a
desirable feature of any specification language is to have the
possibility of refinement. By this, we mean the ability to
specify program components in terms of their external
properties (i.e., a functional specification, sometimes called
a ªblack boxº specification), and only later unfold this black
box specification into more detailed components, and so on
recursively.

In the context of specification languages, a necessary
condition for the possibility of refining is the presence of
names for actions: one needs to be able to name a transition
which is atomic on the current level (i.e., a ªblack boxº
specification), but which is perhaps a complex of transitions
on a finer level. Without such names for actions, one cannot
give an abstract characterization of transitions. Of course,
such an abstract characterization (in terms of preconditions,
postconditions, etc.) should be possible in the framework to
allow refinement later on.

It is not immediately clear how the languages discussed
above behave in this respect. DDL clearly does not allow
refinement (names referring to composed actions simply do
not exist in DDL), while LCM does (at least, if we choose the
signature of the process algebra sort rich enough). The
external functions of ASM give us the means to make black
box specifications. However, it is not possible within the
ASM framework to specify the behavior of such black
boxes, which by implication also precludes the possibility of
proving within the ASM framework that a given imple-
mentation (refinement) of a black box satisfies the specifica-
tions. The designers of the ASM framework prefer to use
general mathematical techniques for treating refinement.
The simple mathematical structure of the ASM framework
makes this feasible.

Although the transaction base from T R resembles the
external functions of ASM, T R is stronger than ASM in this
respect: The transaction base can be used to model black-
box transitions, but, unlike the external functions in ASM,
the transitions of T R can be specified by means of pre and
postconditions within T R itself. Furthermore, it is possible
to later provide an implementation of a transaction in T R,
and to prove that this implementation is indeed a correct
refinement of the functional specification.

In TROLL, it seems that there is almost the possibility to
say that one specification refines the other. TROLL enables
both constraining specification (based on atomic transi-
tion), but also constructive specification of composed
transitions (in terms of more detailed atomic transitions).
What is lacking is syntactic support to relate such a
constructive specification to an atomic transition, so it
cannot be expressed that this more detailed specification
is a refinement of the atomic transition. Semantical
considerations of the relationship between transactions
and their refinement are investigated in detail in [70].

Finally, desirable as the presence of names for composed
actions may be, there is a price to be paid for having the
option of black box specifications. A black box specification
of a transition usually only states which things change, with
the assumption that all other things remain the same. It
should not be necessary for the user to explicitly specify
what is left unaffected by the transition. The problem of
how to avoid statements of what remains the same (the
frame axioms) has proven to be very difficult. This so-called
frame problem is the price that has to be paid.

In languages with only predefined transactions (like in
DDL), the designers of the language have specified the
required frame-axioms. For languages with user-defined
atomic transactions, there is no way out for the user but to
write down the frame axioms explicitly (although they can
sometimes be generated automatically). For the purposes of
execution, the frame problem can be circumvented by an
implementation of the primitive transactions outside the
logic. However, the languages we are dealing with are
meant to specify systems, and the price for such externally
implemented primitive transactions has to be paid at
verification time. For verification purposes, we would want
the primitive transactions to be specified in the logic, which
then brings back the frame problem.

5.2.5 Proofs

Since the languages discussed in this paper are intended as
tools to formally specify software systems, we would expect
them to be equipped with proof systems which enables us
to prove that a specification exhibits certain properties. Of
the languages discussed, only T R and (P)DDL pay
extensive attention to a proof system. TROLL has to rely
on its translation to OSL in order to use the proof system of
OSL, while ASM relies on general mathematical reasoning,
without a formal proof system. LCM has a proof system
based on equational logic.

5.2.6 Syntactic Variety

There is a large variety in the amount of syntactic
distinctions which are made by the various languages. On
the one hand, languages like TROLL and LCM provide a
rich variety of syntactic distinctions, presumably to improve
ease of use by human users, while on the other hand,
approaches like (P)DDL, ASM, and T R provide a much
more terse and uniform syntax. This issue is related with
the different goals which the different proposals are aiming
at. Syntactically rich languages like TROLL and LCM aim at
being a full blown specification language, while formalisms
like T R and (P)DDL aim in the first place at formalizing the
notion of database updates, rather than being a specification
language themselves. ASM was originally designed as a
foundational framework for computation, although it is
used as a specification language as well.

5.2.7 States as Histories

In three of the languages discussed in this paper (ASM,
LCM, and (P)DDL), a composed transition is interpreted as
an ordered pair of states (begin state and end state).
However, for the types of properties that we might want to
verify of our systems using the logics discussed in this
paper, this interpretation of composed transitions is not

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 493

sufficient. For many purposes, an interpretation as a
sequence of (intermediate) states is required. For example,
many safety critical applications require proofs of proper-
ties such as ªaction � is never done,º or ª� is never done
twiceº or ª� is never done twice in a row,º or ªaction � is
never followed by action �.º To prove such properties, we
must consider sequences of intermediate states (as in T R
and TROLL), and not just an ordered pair of begin- and end-
state of a program (as in (P)DDL).

Using such sequences of intermediate states (also called:
histories) as the basis for a formalization of program
behavior is indeed more general than merely considering
the begin state and end state of a program. In particular,
states can be defined as equivalence classes of histories (e.g.,
an end state corresponds with the set of all histories that
terminate in this state). In this way, abstraction mechanisms
can be defined that distinguish more or less details among
histories, as desired. For example, in (P)DDL, any two
histories that have the same begin state and end state are
equivalent. Other possibilities are to regard two histories as
equivalent when they are composed of the same sets of
states, but perhaps in a different order, or only to regard
them as equivalent when they are identical sequences of
states (this is the option taken in T R). For example, assume
that we are interested in the values that a particular variable
v takes during the course of a computation (as is often the
case in safety-critical applications):

. If we are only interested in the final value of v, then
all histories can be identified with their final state;

. If we are interested in all intermediate values of v,
but not in their sequence, then histories can be
treated as sets of states;

. If we are interested in the sequence of values for v,
then histories must be treated as sequences of states.

It is an open issue whether the grain size of such
distinctions between different histories should be a fixed
aspect of the logic (with (P)DDL and T R representing
opposite choices in this respect), or whether such a grain
size should be definable in the language of the logic, for
instance, by expressing equality axioms among histories.

5.2.8 Transitions as Semantical Concepts

In most languages, transitions are available in the language

(e.g., a procedure in (P)DDL corresponds to a transition, as

does an event in LCM), but, semantically, they are derivates

of states. In such languages, a transition is an ordered pair

of states, and no semantically separate category exists for

transitions per se. Furthermore, transitions do not occur in

the languages as first-class objects over which we can

express predicates.
In the words of Gabbay [71, Ch. 4]:ªThe modeling given

so far may eventually prove not radical enough. After all, if

logical dynamics is of equal importance to logical statics,

then the two ought to be accorded equal ontological status.

This means that transitions would come to be viewed, not

as ordered pairs of states, but rather as independent basic

objects in their own right.º Again, it remains an open and

interesting question how approaches in which transitions

are first-class objects relate to the approaches discussed in

this paper, in particular, with respect to the representation

of histories and equivalence of histories.

5.3 Final Remarks

The original motivation of the research reported in this

paper was the lack of consensus among KBS specification

frameworks concerning the specification of control for

KBSs. We had hoped that neighboring areas might have

solved this problem, or at least have established more stable

notions than what had been achieved in the KBS area.
Our investigations among non-KBS specification lan-

guages have revealed a number of constructions that could

certainly be of interest for the KBS specification language

community. Examples of these are the notions of construc-

tive and constraining control specification (and, in parti-

cular, the idea to combine both of these in a single

language), the idea to define transitions in terms of

sequences of intermediate states instead of just the initial

and terminal state of the transition, and the rich variety of

semantic characterizations of the notion of state. Further-

more, these constructions are not just initial ideas, but have

often reached a state of formal and conceptual maturity

which make them ready to be used by other fields such as

the specification of KBSs.
However, this wide variety of well worked out propo-

sals, is at the same time a sign of much unfinished work. As

in the field of KBS specification languages, the neighboring

fields have not yet reached any sort of consensus on the

specification of control, neither in the form of a single ideal

approach, nor in the form of guidelines on when to use

which type of specification.

ACKNOWLEDGMENTS

The authors are grateful to E. BoÈrger, M. Kifer, G. Saake,

and R. Wieringa for their comments on an earlier version of

this paper. The anonymous reviewers of this paper

provided valuable suggestions for improvements.

REFERENCES

[1] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur,
ªDESIRE: Modelling Multi-Agent Systems in a Compositional
Formal Framework,º Int'l J. Cooperative Information Systems, special
issue on Formal Methods in Cooperative Information Systems:
Multiagent Systems, M. Huhns and M. Singh, eds., vol. 6, no. 1,
pp. 67±94, 1997.

[2] F.M.T. Brazier, J. Treur, N.J.E. Wijngaards, and M. Willems,
ªTemporal Semantics of Compositional Task Models and Problem
Solving Methods,º Data and Knowledge Eng., vol. 29, no. 1, pp. 17±
42, 1999.

[3] D. Fensel, The Knowledge Acquisition and Representation Language
KARL. Boston: Kluwer Academic, 1995.

[4] D. Fensel, J. Angele, and R. Studer, ªThe Knowledge Acquisition
and Representation Language KARL,º IEEE Trans. Knowledge and
Data Eng., vol. 10, no. 4, pp. 527±550, July/Aug. 1998.

[5] L. in 't Veld, W. Jonker, and J.W. Spee, ªThe Specification of
Complex Reasoning Tasks in KBSSF,º Formal Specification of
Complex Reasoning Systems, J. Treur and T. Wetter, eds., pp. 233±
255, 1993.

[6] J.W. Spee and L. in 't Veld, ªThe Semantics of KBSSF: A Language
for KBS Design,º Knowledge Acquisition, vol. 6, 1994.

[7] F. Harmelen and J. Balder, ª�ML�2: A Formal Language for KADS
Conceptual Models,º Knowledge Acquisition, vol. 4, no. 1, pp. 127±
161, 1992.

494 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

[8] D. Fensel and R. Groenboom, ªMLPM: Defing a Semantics and
Axiomatization for Specifying the Reasoning Process of Knowl-
edge-Based Systems,º Proc. 12th European Conf. Artificial Intelli-
gence (ECAI-96), pp. 1123±1127, Aug. 1996.

[9] C. Pierret-Golbreich and X. Talon, ªTFL: An Algebraic Language
to Specify the Dynamic Behaviour of Knowledge-Based Systems,º
The Knowledge Eng. Rev., vol. 11, no. 3, pp. 253±280, 1996.

[10] Formal Specification of Complex Reasoning Systems, J. Treur and
T. Wetter, eds. New York: Ellis Horwood, 1993.

[11] D. Fensel and F. Harmelen, ªA Comparison of Languages Which
Operationalize and Formalize KADS Models of Expertise,º The
Knowledge Eng. Rev., vol. 9, no. 2, pp. 105±146, 1994.

[12] D. Fensel, ªFormal Specification Languages in Knowledge and
Software Engineering,º The Knowledge Eng. Rev., vol. 10, no. 4,
pp. 361±404, 1995.

[13] D. Fensel and R. Straatman, ªThe Essence of Problem Solving
Methods: Making Assumptions for Efficiency Reasons,º Advances
in Knowledge Acquisition, N. Shadbolt, K. O'Hara, and G. Schreiber,
eds., pp. 17±32, 1996.

[14] B. Nebel, ªArtificial Intelligence: A Computational Perspective,º
Principals of Knowledge Representation, G. Brewka, ed., studies in
Logic, Language, and Information, pp. 237±266, 1996.

[15] D. Harel, ªDynamic Logic,º Handbook of Philosophical Logic, Vol. II:
Extensions of Classical Logic, D. Gabbay and F. Guenthner, eds.,
pp. 497±604, 1984.

[16] D. Kozen and J. Tiuryn, ªLogics of Programs,º Handbook of
Theoretical Computer Science, J. Leeuwen, ed., vol. B, ch. 14, pp. 789±
840, 1990.

[17] J.A. Bergstra and J.W. Klop, ªAlgebra of Communicating
Processes with Abstraction,º Theoretical Computer Science, vol. 37,
pp. 77±121, 1985.

[18] R.J. Wieringa, ªLCM and MCM: Specification of a Control System
using Dynamic Logic and Process Algebra,º Formal Development of
Reactive Systems: Case Study Production Cell, C. Lewerentz and
T. Lindner, eds., pp. 333±355, 1995.

[19] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas, ªTrollÐA
Language for Object-Oriented Specification of Information Sys-
tems,º ACM Trans. Information Systems, vol. 14, pp. 175±211, Apr.
1996.

[20] A. Bonner and M. Kifer, ªTransaction Logic Programming,º Proc.
10th Int'l Conf. Logic Programming (ICLP), pp. 257±279, 1993.

[21] P. Spruit, R. Wieringa, and J.-J. Meyer, ªAxiomatization, Declara-
tive Semantics and Operational Semantics of Passive and Active
Updates in Logic Databases,º J. Logic and Computation, vol. 5, no. 1,
pp. 27±50, 1995.

[22] P. Spruit, R. Wieringa, and J.-J. Meyer, ªDynamic Database Logic:
The First-Order Case,º Proc. Fourth Int'l Workshop Foundations of
Models and Languages for Data and Objects, U. Lipeck and
B. Thalheim, eds., pp. 102±120, 1993.

[23] Y. Gurevich, ªEvolving Algebras 1993: Lipari Guide,º Specification
and Validation Methods, E. BoÈrger, ed., 1994.

[24] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifications,
vol. 1. Berlin: Springer-Verlag, 1985.

[25] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifications,
vol. 2. Berlin: Springer-Verlag, 1990.

[26] M. Wirsing, ªAlgebraic specification,º Handbook of Theoretical
Computer Science, J. Leeuwen, ed., vol. B, ch. 13, pp. 676±778, 1990.

[27] Algebraic System Specification and Development. M. Bidoit,
H.J. Kreowski, P. Lescane, F. Orejas, and D. Sannella, eds., 1991.

[28] J.M. Spivey, The Z Notation. A Reference Manual, second ed. New
York: Prentice Hall, 1992.

[29] J.B. Wordsworth, Software Development with Z. Addison-Wesley,
1992.

[30] C.B. Jones, Systematic Software Development Using VDM, second ed.
Prentice Hall, 1990.

[31] D. Andrews and D. Ince, Practical Formal Methods with VDM.
McGraw-Hill, 1991.

[32] T. Bolognesi and E. Brinksma, ªIntroduction to the ISO Specifica-
tion Language LOTOS,º Computer Networks and ISDN Systems,
vol. 14, no. 1, pp. 25±59, 1987.

[33] S. Marcus and J. McDermott, ªSALT: A Knowledge Acquisition
Language for Propose and Revise Systems,º Artificial Intelligence,
vol. 39, no. 1, pp. 1±37, 1988.

[34] A.T. Schreiber and B. Birmingham, ªSpecial Issue on the VT
Sisyphus Taskº Int'l J. Human-Computer Studies (IJHCS), 1996.

[35] R. Milner, Communication and Concurrency. New York: Prentice
Hall Int'l, 1989.

[36] F. Kroeger, Temporal Logic of Programs. Berlin: Springer-Verlag,
1987.

[37] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker, ªKADS: A
Modeling Approach to Knowledge Engineering,º Knowledge
Acquisition, vol. 4, no. 1, pp. 5±53, 1992.

[38] A.T. Schreiber, B.J. Wielinga, H. Akkermans, W.V.D. Velde, and R.
de Hoog, ªCommonKADS. A Comprehensive Methodology for
KBS Development,º IEEE Expert, vol. 9, no. 6, pp. 28±37, 1994.

[39] Second Generation Expert Systems, J.-M. David, J.-P. Krivine, and
R .Simmons, eds. Berlin: Springer-Verlag, 1993.

[40] ªSpecial Issue on the Sisyphus 91/92 Models,º Int'l J. Man-
Machine Studies, M. Linster, ed., vol. 40, no. 2, 1994.

[41] D. Fensel and R. Straatman, ªThe Essense of Problem-Solving-
Methods: Making Assumptions for Gaining Efficiency,º Int'l J.
Human Computer Studies, vol. 48, no. 2, pp. 181±215, 1998.

[42] F.M.T. Brazier, P. Langen, J. Treur, N.J.E. Wijngaards, and M.
Willems, ªModelling an Elevator Design Task in DESIRE: The VT
Example,º Int'l J. Human-Computer Studies, special issue on
Sisyphus-VT, A.Th. Schreiber and W.P. Birmingham, eds.,
vol. 44, nos. 3-4, pp. 469±520, 1996.

[43] K. Poeck, D. Fensel, D. Landes, and J. Angele, ªCombining KARL
and CRLM for Designing Vertical Transportation Systems,º Int'l J.
Human-Computer Studies, special issue on Sisyphus-VT,
A.Th. Schreiber and W.P. Birmingham, eds., vol. 44, nos. 3-4,
pp. 435±467, 1996.

[44] A.J. Bonner and M. Kifer, ªAn Overview of Transaction Logic,º
Theoretical Computer Science, vol. 133, no. 2, pp. 205±265, 1994.

[45] A.J. Bonner and M. Kifer, ªA Logic for Programming Database
Transactions,º Logics for Databases and Information Systems,
J. Chomicki and G. Saake, eds., pp. 117±166, 1998.

[46] A. Bonner and M. Kifer, ªTransaction Logic Programming (or, A
Logic of Procedural and Declarative Knowledge),º Technical
Report CSRI-323, Computer Systems Research Inst., Univ. of
Toronto, Nov. 1995.

[47] R. Groenboom and G.R.R. de Lavalette, ªReasoning about
Dynamic Features in Specification Languages,º Semantics of
Specification Languages (SoSL): Proc. Int'l Workshop Semantics of
Specification Languages, D.J. Andrews, J.F. Groote, and
C.A. Middelburg, eds., 1994.

[48] P. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer, ªRegular Database
Update Logics,º Theoretical Computer Science, in press.

[49] M. Aben, Formal Methods in Knowledge Engineering. PhD thesis,
Univ. of Amsterdam, Faculty of Psychology, ISBN 90-5470-028-9,
Feb. 1995.

[50] F. van Harmelen, ªApplying Rule-Base Anomalies to KADS
Inference Structures,º Decision Support Systems, vol. 21, no. 4,
pp. 271±280, 1998.

[51] E. BoÈrger and J.K. Huggins, ªAbstract State Machines 1988-1998:
Commented ASM Bibliography,º EATCS Bull., Formal Specifica-
tion Column, H. Ehrig, ed., pp. 105±127, Feb. 1998.

[52] ªJUCS Special ASM Issue,º J. Universal Computer Science,
E. BoÈrger, ed., vol. 3, nos. 4-5, 1997.

[53] J. Meseguer, ªConditional Rewriting Logic as a Unified Model of
Concurrency,º Theoretical Computer Science, vol. 96, no. 1, pp. 73±
155, 1992.

[54] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer, ªPrinciples of
Maude,º Electronic Notes in Theoretical Computer Science, vol. 4,
1997.

[55] G. Denker, ªFrom Rewrite Theories to Temporal Logic Theories,º
Electronic Notes in Theoretical Computer Science, vol. 15, 1998.

[56] G. Schellhorn and W. Ahrendt, ªReasoning About Abstract State
Machines: The WAM Case Study,º J. Universal Computer Science,
vol. 3, no. 4, pp. 377±413, 1997.

[57] W. Zimmerman and T. Gaul, ªOn the Construction of Correct
Compiler Back-Ends: An ASM Approach,º J. Universal Computer
Science, vol. 3, no. 5, pp. 504±567, 1997.

[58] K. Winter, ªModel Checking for Abstract State Machines,º J.
Universal Computer Science, vol. 3, no. 5, pp. 689±701, 1997.

[59] G. Castillo, I. Durdanovic, and U. GlaÈsser, ªAn Evolving Algebra
Abstract Machine,º Computer Science Logic, selected papers from
CSL '95, H.K. BuÈ ning, ed., pp. 191±214, 1996.

[60] B. Beckert and J. Posegga, ªleanEA: A Lean Evolving Algebra
Compiler,º Computer Science Logic, selected papers from CSL '95,
H. Kleine BuÈ ning, ed., pp. 64±85, 1996.

[61] A.M. Kappel, ªExecutable Specifications Based on Dynamic
Algebras,º Proc. Fourth Int'l Conf. Logic Programming and Automated
Reasoning (LPAR-93), pp. 229±240, 1993.

VAN ECK ET AL.: A SURVEY OF LANGUAGES FOR SPECIFYING DYNAMICS: A KNOWLEDGE ENGINEERING PERSPECTIVE 495

[62] E. BoÈrger, ªWhy Use Evolving Algebras for Hardware and
Software Engineering?,º Theory and Practice of Informatics: Proc.
Software Seminar (SOFSEM '95), M. Bartosek, J. Staudek, and
J. Wiedermann, eds., pp. 236±271, 1995.

[63] A.Z. Diller, An Introduction to Formal Methods. John Wiley & Sons,
1992.

[64] A. Sernadas, C. Sernadas, and J. Costa, ªObject Specification
Logic,º J. Logic and Computation, vol. 5, pp. 603±630, Oct. 1995.

[65] S. Conrad, M. Gogolla, and R. Herzig, ªTROLLlight: A Core
Language for Specifying Objects,º Informatik-Berichte 92-02,
Technische UniversitaÈt Braunschweig, 1992.

[66] R. Jungclaus, Modeling of Dynamic Object SystemsÐA Logic-Based
Approach, Advanced Studies in Computer Science. Vieweg Verlag,
1993.

[67] R. Milner, ªA Calculus of Communicating Systems,º Lecture Notes
in Computer Science, vol. 92. Springer-Verlag, 1980.

[68] S. Conrad, J. Ramos, G. Saake, and C. Sernadas, ªEvolving Logical
Specification in Information Systems,º Logics for Databases and
Information Systems, J. Chomicki and G. Saake, eds., pp. 199±228,
1998.

[69] R.J. Wieringa, ªA Formalization of Objects using Equational
Dynamic Logic,º Proc. Second Int'l Conf. Deductive and Object-
Oriented Databases (DOOD '91), C. Delobel, M. Kifer, and
Y. Masunaga, eds., pp. 431±452, 1991.

[70] G. Denker, J. Ramos, C. Caleiro, and A. Sernadas, ªA Linear
Temporal Logic Approach to Objects with Transactions,º Proc.
Algebraic Methodology and Software Technology: Sixth Int'l Conf.,
AMAST '97, M. Johnson, ed., pp. 170±184, 1997.

[71] D. Gabbay, ªWhat is a Logical System?º Studies in Logic and
Computation, vol. 4, 1994.

Pascal van Eck received his diploma in
computer science (MSc degree) from the Free
University of Amsterdam in 1995. Since 1995,
he has worked as a research assistant in the
Artificial Intelligence Department at the Free
University and has been writing a PhD thesis on
the development of a formal, compositional
semantic structure for the dynamics of multia-
gent systems. In 2000, he started as an
assistant professor in the Information Systems

Group at the University of Twente, The Netherlands. His research
interests include requirements analysis and design of multiagent
systems and their application in e-business, and automated negotiation
between software agents.

Joeri Engelfriet studied computer science and
mathematics at the Free University of Amster-
dam. After receiving MSc degrees in 1993 and
1995, respectively, he started working on a PhD
thesis on formal models for static and dynamic
aspects of complex reasoning processes, and
was awarded the PhD degree from the Free
University in 1999. From 1998 to 1999, he
worked as an associate professor in the AI group
at the Free University, where his research

interests shifted toward knowledge-based systems, agent technology,
and electronic commerce. He is author of more than 25 research papers.
Currently, he is employed at McKinsey & Company as management
consultant.

Dieter Fensel studied mathematics, sociology
and computer science in Berlin. In 1989, he
joined the Institute AIFB at the University of
Karlsruhe. His major subject was knowledge
engineering and his PhD thesis, in 1993, was
about a formal specification language for knowl-
edge-based systems. From 1994 until 1996, he
visited the group of Bob Wielinga at the SWI
Department in Amsterdam. During this time, his
main interests were problem-solving methods

for knowledge-based systems. In 1996, he came back as a senior
researcher at the Institute AIFB working finalizing his Habilitation in
1998. In 1999, he started as an associate professor at the Free
University of Amsterdam. Currently, his focus is on the use of ontologies
to mediate access to heterogeneous knowledge sources and to apply
them in electronic commerce.

Frank van Harmelen studied mathematics and
computer science in Amsterdam. In 1989, he
was awarded the PhD degree from the Depart-
ment of AI in Edinburgh for his research on
metalevel reasoning. While in Edinburgh, he
worked with Dr. Peter Jackson on Socrates, a
logic-based toolkit for expert systems, and with
Professor Alan Bundy on proof planning for
inductive theorem proving. After his PhD re-
search, he moved back to Amsterdam where he

worked from 1990 to 1995 in the SWI Department under Professor
Wielinga. He was involved in the REFLECT project on the use of
reflection in expert systems, and in the KADS project, where he
contributed to the development of the (ML)2 language for formally
specifying Knowledge-Based Systems. In 1995, he joined the AI
Department at the Vrije Universiteit Amsterdam, where he holds a
senior lectureship. His current interests include formal specification
languages for knowledge-based systems, verification and validation of
knowledge-based systems, and developing approximate notions of
correctness for knowledge-based systems. He is author of a book on
metalevel inference, editor of a book on knowledge-based systems, and
has published more than 60 research papers.

Yde Venema received the PhD degree in
1992 from the University of Amsterdam under
the supervision of Johan van Benthem. His
main research interests are in various
branches of modal logic, such as temporal
and dynamic logic. He is the coauthor of a
monograph on multidimensional modal logic
and is currently preparing a text book on
modal logic. Dr. Venema is working at the
University of Amsterdam as a research fellow

of the Royal Netherlands Academy of Arts and Sciences.

Mark Willems received the PhD degree in 1993
from the Faculty of Applied Mathematics at the
University of Twente, The Netherlands, on
semantic representation of natural language.
From 1993 to 1995, he was assistant professor
(UD) at the Vrije Universiteit Amsterdam, The
Netherlands. From 1996 to 1997, he worked at
Bolesian, the leading knowledge technology and
management company in the Benelux. From
1997 to 1998, he worked at Cycorp, Austin,

Texas, a research company specializing in ontologies and representa-
tion of common-sense knowledge. After returning to the Netherlands, he
worked for Bolesian again. In 2000, he joined Quintiq, a provider of
advanced planning and scheduling software, as vice president of
professional services.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

496 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

